Используем интегрирование по частям:
∫udv=uv−∫vdu
пусть u(x)=xcos7(2) и пусть dv(x)=sin(2x) dx.
Затем du(x)=cos7(2) dx.
Чтобы найти v(x):
пусть u=2x.
Тогда пусть du=2dx и подставим 2du:
∫sin(u)du
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫sin(u)du=21∫sin(u)du
Интеграл от синуса есть минус косинус:
∫sin(u)du=−cos(u)
Таким образом, результат будет: −21cos(u)
Если сейчас заменить u ещё в:
−21cos(2x)
Теперь решаем под-интеграл.
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫−21cos7(2)cos(2x)dx=−21cos7(2)∫cos(2x)dx
пусть u=2x.
Тогда пусть du=2dx и подставим 2du:
∫cos(u)du
Интеграл от произведения функции на константу есть эта константа на интеграл от данной функции:
∫cos(u)du=21∫cos(u)du
Интеграл от косинуса есть синус:
∫cos(u)du=sin(u)
Таким образом, результат будет: 21sin(u)
Если сейчас заменить u ещё в:
21sin(2x)
Таким образом, результат будет: −41sin(2x)cos7(2)
Теперь упростить:
21(−xcos(2x)+21sin(2x))cos7(2)
Добавляем постоянную интегрирования:
21(−xcos(2x)+21sin(2x))cos7(2)+constant