4*x+16>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 4*x+16>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
    4*x + 16 > 0
    $$4 x + 16 > 0$$
    Подробное решение
    Дано неравенство:
    $$4 x + 16 > 0$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$4 x + 16 = 0$$
    Решаем:
    Дано линейное уравнение:
    4*x+16 = 0

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$4 x = -16$$
    Разделим обе части ур-ния на 4
    x = -16 / (4)

    $$x_{1} = -4$$
    $$x_{1} = -4$$
    Данные корни
    $$x_{1} = -4$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$-4 - \frac{1}{10}$$
    =
    $$- \frac{41}{10}$$
    подставляем в выражение
    $$4 x + 16 > 0$$
    $$4 \left(- \frac{41}{10}\right) + 16 > 0$$
    -2/5 > 0

    Тогда
    $$x < -4$$
    не выполняется
    значит решение неравенства будет при:
    $$x > -4$$
             _____  
            /
    -------ο-------
           x_1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-4 < x, x < oo)
    $$-4 < x \wedge x < \infty$$
    Быстрый ответ 2 [src]
    (-4, oo)
    $$x\ in\ \left(-4, \infty\right)$$
    График
    4*x+16>0 (неравенство) /media/krcore-image-pods/hash/inequation/8/56/87a03869df4b4a2164ef351c5bccc.png