1/2-x<=2 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 1/2-x<=2 (множество решений неравенства)

    Решение

    Вы ввели [src]
    1/2 - x <= 2
    $$- x + \frac{1}{2} \leq 2$$
    Подробное решение
    Дано неравенство:
    $$- x + \frac{1}{2} \leq 2$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$- x + \frac{1}{2} = 2$$
    Решаем:
    Дано линейное уравнение:
    1/2-x = 2

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    -x = 3/2

    Разделим обе части ур-ния на -1
    x = 3/2 / (-1)

    $$x_{1} = - \frac{3}{2}$$
    $$x_{1} = - \frac{3}{2}$$
    Данные корни
    $$x_{1} = - \frac{3}{2}$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} \leq x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$- \frac{8}{5}$$
    =
    $$- \frac{8}{5}$$
    подставляем в выражение
    $$- x + \frac{1}{2} \leq 2$$
    1/2 - -8/5 <= 2

    21     
    -- <= 2
    10     

    но
    21     
    -- >= 2
    10     

    Тогда
    $$x \leq - \frac{3}{2}$$
    не выполняется
    значит решение неравенства будет при:
    $$x \geq - \frac{3}{2}$$
             _____  
            /
    -------•-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-3/2 <= x, x < oo)
    $$- \frac{3}{2} \leq x \wedge x < \infty$$
    Быстрый ответ 2 [src]
    [-3/2, oo)
    $$x \in \left[- \frac{3}{2}, \infty\right)$$
    График
    1/2-x<=2 (неравенство) /media/krcore-image-pods/hash/c3891c7a29/c5cc1bcd9b/009f7c00490f/im.png