7-x>=5 (неравенство)
Учитель очень удивится увидев твоё верное решение 😼
Укажите решение неравенства: 7-x>=5 (множество решений неравенства)
Решение
Подробное решение
Дано неравенство:
$$- x + 7 \geq 5$$
Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
$$- x + 7 = 5$$
Решаем:
Дано линейное уравнение:
7-x = 5
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
-x = -2
Разделим обе части ур-ния на -1
x = -2 / (-1)
$$x_{1} = 2$$
$$x_{1} = 2$$
Данные корни
$$x_{1} = 2$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_{0} \leq x_{1}$$
Возьмём например точку
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\frac{19}{10}$$
=
$$\frac{19}{10}$$
подставляем в выражение
$$- x + 7 \geq 5$$
19
7 - -- >= 5
10
51
-- >= 5
10
значит решение неравенства будет при:
$$x \leq 2$$
_____
\
-------•-------
x1
Решение неравенства на графике
$$x \leq 2 \wedge -\infty < x$$
$$x \in \left(-\infty, 2\right]$$