3/((x-1))>1 (неравенство)
Учитель очень удивится увидев твоё верное решение 😼
Укажите решение неравенства: 3/((x-1))>1 (множество решений неравенства)
Решение
Подробное решение
Дано неравенство:
$$\frac{3}{\left(x - 1\right)^{1}} > 1$$
Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
$$\frac{3}{\left(x - 1\right)^{1}} = 1$$
Решаем:
Дано уравнение:
$$\frac{3}{\left(x - 1\right)^{1}} = 1$$
Используем правило пропорций:
Из a1/b1 = a2/b2 следует a1*b2 = a2*b1,
В нашем случае
a1 = 3
b1 = -1 + x
a2 = 1
b2 = 1
зн. получим ур-ние
$$3 = x - 1$$
$$3 = x - 1$$
Переносим свободные слагаемые (без x)
из левой части в правую, получим:
$$0 = x - 4$$
Переносим слагаемые с неизвестным x
из правой части в левую:
-x = -4
Разделим обе части ур-ния на -1
x = -4 / (-1)
Получим ответ: x = 4
$$x_{1} = 4$$
$$x_{1} = 4$$
Данные корни
$$x_{1} = 4$$
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
$$x_{0} < x_{1}$$
Возьмём например точку
$$x_{0} = x_{1} - \frac{1}{10}$$
=
$$\frac{39}{10}$$
=
$$\frac{39}{10}$$
подставляем в выражение
$$\frac{3}{\left(x - 1\right)^{1}} > 1$$
$$\frac{3}{\left(-1 + \frac{39}{10}\right)^{1}} > 1$$
30
-- > 1
29
значит решение неравенства будет при:
$$x < 4$$
_____
\
-------ο-------
x1
Решение неравенства на графике
$$x \in \left(1, 4\right)$$