8-x<64 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 8-x<64 (множество решений неравенства)

    Решение

    Вы ввели [src]
    8 - x < 64
    $$- x + 8 < 64$$
    Подробное решение
    Дано неравенство:
    $$- x + 8 < 64$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$- x + 8 = 64$$
    Решаем:
    Дано линейное уравнение:
    8-x = 64

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    -x = 56

    Разделим обе части ур-ния на -1
    x = 56 / (-1)

    $$x_{1} = -56$$
    $$x_{1} = -56$$
    Данные корни
    $$x_{1} = -56$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$- \frac{561}{10}$$
    =
    $$- \frac{561}{10}$$
    подставляем в выражение
    $$- x + 8 < 64$$
        -561      
    8 - ----- < 64
          10      

    641     
    --- < 64
     10     

    но
    641     
    --- > 64
     10     

    Тогда
    $$x < -56$$
    не выполняется
    значит решение неравенства будет при:
    $$x > -56$$
             _____  
            /
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-56 < x, x < oo)
    $$-56 < x \wedge x < \infty$$
    Быстрый ответ 2 [src]
    (-56, oo)
    $$x \in \left(-56, \infty\right)$$