x-2<3*x (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: x-2<3*x (множество решений неравенства)

    Решение

    Вы ввели [src]
    x - 2 < 3*x
    $$x - 2 < 3 x$$
    Подробное решение
    Дано неравенство:
    $$x - 2 < 3 x$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$x - 2 = 3 x$$
    Решаем:
    Дано линейное уравнение:
    x-2 = 3*x

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = 3 x + 2$$
    Переносим слагаемые с неизвестным x
    из правой части в левую:
    -2*x = 2

    Разделим обе части ур-ния на -2
    x = 2 / (-2)

    $$x_{1} = -1$$
    $$x_{1} = -1$$
    Данные корни
    $$x_{1} = -1$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$- \frac{11}{10}$$
    =
    $$- \frac{11}{10}$$
    подставляем в выражение
    $$x - 2 < 3 x$$
    $$-2 + - \frac{11}{10} < \frac{-33}{10} 1$$
    -31    -33 
    ---- < ----
     10     10 

    но
    -31    -33 
    ---- > ----
     10     10 

    Тогда
    $$x < -1$$
    не выполняется
    значит решение неравенства будет при:
    $$x > -1$$
             _____  
            /
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-1 < x, x < oo)
    $$-1 < x \wedge x < \infty$$
    Быстрый ответ 2 [src]
    (-1, oo)
    $$x \in \left(-1, \infty\right)$$