(x+12)*2<-5 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: (x+12)*2<-5 (множество решений неравенства)

    Решение

    Вы ввели [src]
    (x + 12)*2 < -5
    $$2 \left(x + 12\right) < -5$$
    Подробное решение
    Дано неравенство:
    $$2 \left(x + 12\right) < -5$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$2 \left(x + 12\right) = -5$$
    Решаем:
    Дано линейное уравнение:
    (x+12)*2 = -5

    Раскрываем скобочки в левой части ур-ния
    x*2+12*2 = -5

    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$2 x = -29$$
    Разделим обе части ур-ния на 2
    x = -29 / (2)

    $$x_{1} = - \frac{29}{2}$$
    $$x_{1} = - \frac{29}{2}$$
    Данные корни
    $$x_{1} = - \frac{29}{2}$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$- \frac{73}{5}$$
    =
    $$- \frac{73}{5}$$
    подставляем в выражение
    $$2 \left(x + 12\right) < -5$$
    $$2 \left(- \frac{73}{5} + 12\right) < -5$$
    -26/5 < -5

    значит решение неравенства будет при:
    $$x < - \frac{29}{2}$$
     _____          
          \    
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    And(-oo < x, x < -29/2)
    $$-\infty < x \wedge x < - \frac{29}{2}$$
    Быстрый ответ 2 [src]
    (-oo, -29/2)
    $$x \in \left(-\infty, - \frac{29}{2}\right)$$
    График
    (x+12)*2<-5 (неравенство) /media/krcore-image-pods/hash/c2d795a097/d1931d9d79/789b8dd6ff10/im.png