(x+3)/(x-1)>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: (x+3)/(x-1)>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
    x + 3    
    ----- > 0
    x - 1    
    $$\frac{x + 3}{x - 1} > 0$$
    Подробное решение
    Дано неравенство:
    $$\frac{x + 3}{x - 1} > 0$$
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    $$\frac{x + 3}{x - 1} = 0$$
    Решаем:
    Дано уравнение:
    $$\frac{x + 3}{x - 1} = 0$$
    Домножим обе части ур-ния на знаменатель -1 + x
    получим:
    $$x + 3 = 0$$
    Переносим свободные слагаемые (без x)
    из левой части в правую, получим:
    $$x = -3$$
    $$x_{1} = -3$$
    $$x_{1} = -3$$
    Данные корни
    $$x_{1} = -3$$
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    $$x_{0} < x_{1}$$
    Возьмём например точку
    $$x_{0} = x_{1} - \frac{1}{10}$$
    =
    $$-3 - \frac{1}{10}$$
    =
    $$- \frac{31}{10}$$
    подставляем в выражение
    $$\frac{x + 3}{x - 1} > 0$$
    $$\frac{- \frac{31}{10} + 3}{- \frac{31}{10} - 1} > 0$$
    1/41 > 0

    значит решение неравенства будет при:
    $$x < -3$$
     _____          
          \    
    -------ο-------
           x1
    Решение неравенства на графике
    Быстрый ответ [src]
    Or(And(-oo < x, x < -3), And(1 < x, x < oo))
    $$\left(-\infty < x \wedge x < -3\right) \vee \left(1 < x \wedge x < \infty\right)$$
    Быстрый ответ 2 [src]
    (-oo, -3) U (1, oo)
    $$x\ in\ \left(-\infty, -3\right) \cup \left(1, \infty\right)$$
    График
    (x+3)/(x-1)>0 (неравенство) /media/krcore-image-pods/hash/inequation/0/1d/102e509c826bf91d4d2868189d132.png