Дано неравенство: x3+2x2<3x Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние: x3+2x2=3x Решаем: x1=0 x2=1 x3=−3 x1=0 x2=1 x3=−3 Данные корни x3=−3 x1=0 x2=1 являются точками смены знака неравенства в решениях. Сначала определимся со знаком до крайней левой точки: x0<x3 Возьмём например точку x0=x3−101 = −1031 = −1031 подставляем в выражение x3+2x2<3x (−1031)3+2(−1031)2<10−931
-10571 -93
------- < ----
1000 10
значит одно из решений нашего неравенства будет при: x<−3