-x2+3*x<0 (неравенство)
Учитель очень удивится увидев твоё верное решение 😼
Укажите решение неравенства: -x2+3*x<0 (множество решений неравенства)
Решение
Подробное решение
Дано неравенство:
3x−x2<0
Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
3x−x2=0
Решаем:
Дано линейное уравнение:
-x2+3*x = 0
Приводим подобные слагаемые в левой части ур-ния:
-x2 + 3*x = 0
Разделим обе части ур-ния на (-x2 + 3*x)/x
x = 0 / ((-x2 + 3*x)/x)
x1=3x2
x1=3x2
Данные корни
x1=3x2
являются точками смены знака неравенства в решениях.
Сначала определимся со знаком до крайней левой точки:
x0<x1
Возьмём например точку
x0=x1−101
=
3x2+−101
=
3x2−101
подставляем в выражение
3x−x2<0
/x2 1 \
-x2 + 3*|-- - --| < 0
\3 10/
-3/10 < 0
значит решение неравенства будет при:
x<3x2
_____
\
-------ο-------
x1
x<3x2