(1/64)^x<0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: (1/64)^x<0 (множество решений неравенства)

    Решение

    Вы ввели [src]
      -x    
    64   < 0
    (164)x<0\left(\frac{1}{64}\right)^{x} < 0
    Подробное решение
    Дано неравенство:
    (164)x<0\left(\frac{1}{64}\right)^{x} < 0
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    (164)x=0\left(\frac{1}{64}\right)^{x} = 0
    Решаем:
    x1=97.2286589230822x_{1} = 97.2286589230822
    x2=93.2286589230822x_{2} = 93.2286589230822
    x3=73.2286589230822x_{3} = 73.2286589230822
    x4=85.2286589230822x_{4} = 85.2286589230822
    x5=53.2286589230822x_{5} = 53.2286589230822
    x6=35.2286589230822x_{6} = 35.2286589230822
    x7=69.2286589230822x_{7} = 69.2286589230822
    x8=17.2286589230822x_{8} = 17.2286589230822
    x9=57.2286589230822x_{9} = 57.2286589230822
    x10=19.2286589230822x_{10} = 19.2286589230822
    x11=67.2286589230822x_{11} = 67.2286589230822
    x12=55.2286589230822x_{12} = 55.2286589230822
    x13=11.2286589230822x_{13} = 11.2286589230822
    x14=51.2286589230822x_{14} = 51.2286589230822
    x15=81.2286589230822x_{15} = 81.2286589230822
    x16=49.2286589230822x_{16} = 49.2286589230822
    x17=13.2286589230822x_{17} = 13.2286589230822
    x18=43.2286589230822x_{18} = 43.2286589230822
    x19=87.2286589230822x_{19} = 87.2286589230822
    x20=99.2286589230822x_{20} = 99.2286589230822
    x21=83.2286589230822x_{21} = 83.2286589230822
    x22=89.2286589230822x_{22} = 89.2286589230822
    x23=25.2286589230822x_{23} = 25.2286589230822
    x24=79.2286589230822x_{24} = 79.2286589230822
    x25=59.2286589230822x_{25} = 59.2286589230822
    x26=65.2286589230822x_{26} = 65.2286589230822
    x27=75.2286589230822x_{27} = 75.2286589230822
    x28=31.2286589230822x_{28} = 31.2286589230822
    x29=23.2286589230822x_{29} = 23.2286589230822
    x30=91.2286589230822x_{30} = 91.2286589230822
    x31=29.2286589230822x_{31} = 29.2286589230822
    x32=9.22865892308225x_{32} = 9.22865892308225
    x33=7.22865892308225x_{33} = 7.22865892308225
    x34=21.2286589230822x_{34} = 21.2286589230822
    x35=15.2286589230822x_{35} = 15.2286589230822
    x36=41.2286589230822x_{36} = 41.2286589230822
    x37=101.228658923082x_{37} = 101.228658923082
    x38=37.2286589230822x_{38} = 37.2286589230822
    x39=95.2286589230822x_{39} = 95.2286589230822
    x40=33.2286589230822x_{40} = 33.2286589230822
    x41=39.2286589230822x_{41} = 39.2286589230822
    x42=77.2286589230822x_{42} = 77.2286589230822
    x43=71.2286589230822x_{43} = 71.2286589230822
    x44=103.228658923082x_{44} = 103.228658923082
    x45=47.2286589230822x_{45} = 47.2286589230822
    x46=63.2286589230822x_{46} = 63.2286589230822
    x47=27.2286589230822x_{47} = 27.2286589230822
    x48=105.228658923082x_{48} = 105.228658923082
    x49=45.2286589230822x_{49} = 45.2286589230822
    x50=61.2286589230822x_{50} = 61.2286589230822
    x1=97.2286589230822x_{1} = 97.2286589230822
    x2=93.2286589230822x_{2} = 93.2286589230822
    x3=73.2286589230822x_{3} = 73.2286589230822
    x4=85.2286589230822x_{4} = 85.2286589230822
    x5=53.2286589230822x_{5} = 53.2286589230822
    x6=35.2286589230822x_{6} = 35.2286589230822
    x7=69.2286589230822x_{7} = 69.2286589230822
    x8=17.2286589230822x_{8} = 17.2286589230822
    x9=57.2286589230822x_{9} = 57.2286589230822
    x10=19.2286589230822x_{10} = 19.2286589230822
    x11=67.2286589230822x_{11} = 67.2286589230822
    x12=55.2286589230822x_{12} = 55.2286589230822
    x13=11.2286589230822x_{13} = 11.2286589230822
    x14=51.2286589230822x_{14} = 51.2286589230822
    x15=81.2286589230822x_{15} = 81.2286589230822
    x16=49.2286589230822x_{16} = 49.2286589230822
    x17=13.2286589230822x_{17} = 13.2286589230822
    x18=43.2286589230822x_{18} = 43.2286589230822
    x19=87.2286589230822x_{19} = 87.2286589230822
    x20=99.2286589230822x_{20} = 99.2286589230822
    x21=83.2286589230822x_{21} = 83.2286589230822
    x22=89.2286589230822x_{22} = 89.2286589230822
    x23=25.2286589230822x_{23} = 25.2286589230822
    x24=79.2286589230822x_{24} = 79.2286589230822
    x25=59.2286589230822x_{25} = 59.2286589230822
    x26=65.2286589230822x_{26} = 65.2286589230822
    x27=75.2286589230822x_{27} = 75.2286589230822
    x28=31.2286589230822x_{28} = 31.2286589230822
    x29=23.2286589230822x_{29} = 23.2286589230822
    x30=91.2286589230822x_{30} = 91.2286589230822
    x31=29.2286589230822x_{31} = 29.2286589230822
    x32=9.22865892308225x_{32} = 9.22865892308225
    x33=7.22865892308225x_{33} = 7.22865892308225
    x34=21.2286589230822x_{34} = 21.2286589230822
    x35=15.2286589230822x_{35} = 15.2286589230822
    x36=41.2286589230822x_{36} = 41.2286589230822
    x37=101.228658923082x_{37} = 101.228658923082
    x38=37.2286589230822x_{38} = 37.2286589230822
    x39=95.2286589230822x_{39} = 95.2286589230822
    x40=33.2286589230822x_{40} = 33.2286589230822
    x41=39.2286589230822x_{41} = 39.2286589230822
    x42=77.2286589230822x_{42} = 77.2286589230822
    x43=71.2286589230822x_{43} = 71.2286589230822
    x44=103.228658923082x_{44} = 103.228658923082
    x45=47.2286589230822x_{45} = 47.2286589230822
    x46=63.2286589230822x_{46} = 63.2286589230822
    x47=27.2286589230822x_{47} = 27.2286589230822
    x48=105.228658923082x_{48} = 105.228658923082
    x49=45.2286589230822x_{49} = 45.2286589230822
    x50=61.2286589230822x_{50} = 61.2286589230822
    Данные корни
    x33=7.22865892308225x_{33} = 7.22865892308225
    x32=9.22865892308225x_{32} = 9.22865892308225
    x13=11.2286589230822x_{13} = 11.2286589230822
    x17=13.2286589230822x_{17} = 13.2286589230822
    x35=15.2286589230822x_{35} = 15.2286589230822
    x8=17.2286589230822x_{8} = 17.2286589230822
    x10=19.2286589230822x_{10} = 19.2286589230822
    x34=21.2286589230822x_{34} = 21.2286589230822
    x29=23.2286589230822x_{29} = 23.2286589230822
    x23=25.2286589230822x_{23} = 25.2286589230822
    x47=27.2286589230822x_{47} = 27.2286589230822
    x31=29.2286589230822x_{31} = 29.2286589230822
    x28=31.2286589230822x_{28} = 31.2286589230822
    x40=33.2286589230822x_{40} = 33.2286589230822
    x6=35.2286589230822x_{6} = 35.2286589230822
    x38=37.2286589230822x_{38} = 37.2286589230822
    x41=39.2286589230822x_{41} = 39.2286589230822
    x36=41.2286589230822x_{36} = 41.2286589230822
    x18=43.2286589230822x_{18} = 43.2286589230822
    x49=45.2286589230822x_{49} = 45.2286589230822
    x45=47.2286589230822x_{45} = 47.2286589230822
    x16=49.2286589230822x_{16} = 49.2286589230822
    x14=51.2286589230822x_{14} = 51.2286589230822
    x5=53.2286589230822x_{5} = 53.2286589230822
    x12=55.2286589230822x_{12} = 55.2286589230822
    x9=57.2286589230822x_{9} = 57.2286589230822
    x25=59.2286589230822x_{25} = 59.2286589230822
    x50=61.2286589230822x_{50} = 61.2286589230822
    x46=63.2286589230822x_{46} = 63.2286589230822
    x26=65.2286589230822x_{26} = 65.2286589230822
    x11=67.2286589230822x_{11} = 67.2286589230822
    x7=69.2286589230822x_{7} = 69.2286589230822
    x43=71.2286589230822x_{43} = 71.2286589230822
    x3=73.2286589230822x_{3} = 73.2286589230822
    x27=75.2286589230822x_{27} = 75.2286589230822
    x42=77.2286589230822x_{42} = 77.2286589230822
    x24=79.2286589230822x_{24} = 79.2286589230822
    x15=81.2286589230822x_{15} = 81.2286589230822
    x21=83.2286589230822x_{21} = 83.2286589230822
    x4=85.2286589230822x_{4} = 85.2286589230822
    x19=87.2286589230822x_{19} = 87.2286589230822
    x22=89.2286589230822x_{22} = 89.2286589230822
    x30=91.2286589230822x_{30} = 91.2286589230822
    x2=93.2286589230822x_{2} = 93.2286589230822
    x39=95.2286589230822x_{39} = 95.2286589230822
    x1=97.2286589230822x_{1} = 97.2286589230822
    x20=99.2286589230822x_{20} = 99.2286589230822
    x37=101.228658923082x_{37} = 101.228658923082
    x44=103.228658923082x_{44} = 103.228658923082
    x48=105.228658923082x_{48} = 105.228658923082
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x33x_{0} < x_{33}
    Возьмём например точку
    x0=x33110x_{0} = x_{33} - \frac{1}{10}
    =
    110+7.22865892308225- \frac{1}{10} + 7.22865892308225
    =
    7.128658923082257.12865892308225
    подставляем в выражение
    (164)x<0\left(\frac{1}{64}\right)^{x} < 0
    (164)7.12865892308225<0\left(\frac{1}{64}\right)^{7.12865892308225} < 0
    1.33155469968014e-13 < 0

    но
    1.33155469968014e-13 > 0

    Тогда
    x<7.22865892308225x < 7.22865892308225
    не выполняется
    значит одно из решений нашего неравенства будет при:
    x>7.22865892308225x<9.22865892308225x > 7.22865892308225 \wedge x < 9.22865892308225
             _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
            /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \  
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x33      x32      x13      x17      x35      x8      x10      x34      x29      x23      x47      x31      x28      x40      x6      x38      x41      x36      x18      x49      x45      x16      x14      x5      x12      x9      x25      x50      x46      x26      x11      x7      x43      x3      x27      x42      x24      x15      x21      x4      x19      x22      x30      x2      x39      x1      x20      x37      x44      x48

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x>7.22865892308225x<9.22865892308225x > 7.22865892308225 \wedge x < 9.22865892308225
    x>11.2286589230822x<13.2286589230822x > 11.2286589230822 \wedge x < 13.2286589230822
    x>15.2286589230822x<17.2286589230822x > 15.2286589230822 \wedge x < 17.2286589230822
    x>19.2286589230822x<21.2286589230822x > 19.2286589230822 \wedge x < 21.2286589230822
    x>23.2286589230822x<25.2286589230822x > 23.2286589230822 \wedge x < 25.2286589230822
    x>27.2286589230822x<29.2286589230822x > 27.2286589230822 \wedge x < 29.2286589230822
    x>31.2286589230822x<33.2286589230822x > 31.2286589230822 \wedge x < 33.2286589230822
    x>35.2286589230822x<37.2286589230822x > 35.2286589230822 \wedge x < 37.2286589230822
    x>39.2286589230822x<41.2286589230822x > 39.2286589230822 \wedge x < 41.2286589230822
    x>43.2286589230822x<45.2286589230822x > 43.2286589230822 \wedge x < 45.2286589230822
    x>47.2286589230822x<49.2286589230822x > 47.2286589230822 \wedge x < 49.2286589230822
    x>51.2286589230822x<53.2286589230822x > 51.2286589230822 \wedge x < 53.2286589230822
    x>55.2286589230822x<57.2286589230822x > 55.2286589230822 \wedge x < 57.2286589230822
    x>59.2286589230822x<61.2286589230822x > 59.2286589230822 \wedge x < 61.2286589230822
    x>63.2286589230822x<65.2286589230822x > 63.2286589230822 \wedge x < 65.2286589230822
    x>67.2286589230822x<69.2286589230822x > 67.2286589230822 \wedge x < 69.2286589230822
    x>71.2286589230822x<73.2286589230822x > 71.2286589230822 \wedge x < 73.2286589230822
    x>75.2286589230822x<77.2286589230822x > 75.2286589230822 \wedge x < 77.2286589230822
    x>79.2286589230822x<81.2286589230822x > 79.2286589230822 \wedge x < 81.2286589230822
    x>83.2286589230822x<85.2286589230822x > 83.2286589230822 \wedge x < 85.2286589230822
    x>87.2286589230822x<89.2286589230822x > 87.2286589230822 \wedge x < 89.2286589230822
    x>91.2286589230822x<93.2286589230822x > 91.2286589230822 \wedge x < 93.2286589230822
    x>95.2286589230822x<97.2286589230822x > 95.2286589230822 \wedge x < 97.2286589230822
    x>99.2286589230822x<101.228658923082x > 99.2286589230822 \wedge x < 101.228658923082
    x>103.228658923082x<105.228658923082x > 103.228658923082 \wedge x < 105.228658923082
    Решение неравенства на графике
    0123456789-5-4-3-2-110020
    Быстрый ответ
    Данное неравенство не имеет решений
    График
    (1/64)^x<0 (неравенство) /media/krcore-image-pods/hash/inequation/0/a3/d9a63ce685df7b690cb2538a4b03d.png