25^(x+1)-29*10^x-4^(x+1)>0 (неравенство)

Учитель очень удивится увидев твоё верное решение 😼

В неравенстве неизвестная

    Укажите решение неравенства: 25^(x+1)-29*10^x-4^(x+1)>0 (множество решений неравенства)

    Решение

    Вы ввели [src]
      x + 1        x    x + 1    
    25      - 29*10  - 4      > 0
    4x+1+2910x+25x+1>0- 4^{x + 1} + - 29 \cdot 10^{x} + 25^{x + 1} > 0
    Подробное решение
    Дано неравенство:
    4x+1+2910x+25x+1>0- 4^{x + 1} + - 29 \cdot 10^{x} + 25^{x + 1} > 0
    Чтобы решить это нер-во - надо сначала решить соотвествующее ур-ние:
    4x+1+2910x+25x+1=0- 4^{x + 1} + - 29 \cdot 10^{x} + 25^{x + 1} = 0
    Решаем:
    x1=43.0161482956x_{1} = -43.0161482956
    x2=59.0161482956x_{2} = -59.0161482956
    x3=89.0161482956x_{3} = -89.0161482956
    x4=85.0161482956x_{4} = -85.0161482956
    x5=107.016148296x_{5} = -107.016148296
    x6=95.0161482956x_{6} = -95.0161482956
    x7=27.0160116495x_{7} = -27.0160116495
    x8=20.9838018399x_{8} = -20.9838018399
    x9=67.0161482956x_{9} = -67.0161482956
    x10=47.0161482956x_{10} = -47.0161482956
    x11=49.0161482956x_{11} = -49.0161482956
    x12=51.0161482956x_{12} = -51.0161482956
    x13=0.273290551007x_{13} = 0.273290551007
    x14=99.0161482956x_{14} = -99.0161482956
    x15=35.016148206x_{15} = -35.016148206
    x16=37.0161482813x_{16} = -37.0161482813
    x17=81.0161482956x_{17} = -81.0161482956
    x18=101.016148296x_{18} = -101.016148296
    x19=23.0108368572x_{19} = -23.0108368572
    x20=87.0161482956x_{20} = -87.0161482956
    x21=115.016148296x_{21} = -115.016148296
    x22=39.0161482933x_{22} = -39.0161482933
    x23=105.016148296x_{23} = -105.016148296
    x24=25.015294841x_{24} = -25.015294841
    x25=69.0161482956x_{25} = -69.0161482956
    x26=45.0161482956x_{26} = -45.0161482956
    x27=65.0161482956x_{27} = -65.0161482956
    x28=111.016148296x_{28} = -111.016148296
    x29=57.0161482956x_{29} = -57.0161482956
    x30=83.0161482956x_{30} = -83.0161482956
    x31=73.0161482956x_{31} = -73.0161482956
    x32=53.0161482956x_{32} = -53.0161482956
    x33=79.0161482956x_{33} = -79.0161482956
    x34=41.0161482952x_{34} = -41.0161482952
    x35=93.0161482956x_{35} = -93.0161482956
    x36=97.0161482956x_{36} = -97.0161482956
    x37=55.0161482956x_{37} = -55.0161482956
    x38=29.0161264298x_{38} = -29.0161264298
    x39=71.0161482956x_{39} = -71.0161482956
    x40=77.0161482956x_{40} = -77.0161482956
    x41=113.016148296x_{41} = -113.016148296
    x42=63.0161482956x_{42} = -63.0161482956
    x43=109.016148296x_{43} = -109.016148296
    x44=61.0161482956x_{44} = -61.0161482956
    x45=75.0161482956x_{45} = -75.0161482956
    x46=91.0161482956x_{46} = -91.0161482956
    x47=103.016148296x_{47} = -103.016148296
    x48=33.0161477358x_{48} = -33.0161477358
    x49=31.016144797x_{49} = -31.016144797
    x1=43.0161482956x_{1} = -43.0161482956
    x2=59.0161482956x_{2} = -59.0161482956
    x3=89.0161482956x_{3} = -89.0161482956
    x4=85.0161482956x_{4} = -85.0161482956
    x5=107.016148296x_{5} = -107.016148296
    x6=95.0161482956x_{6} = -95.0161482956
    x7=27.0160116495x_{7} = -27.0160116495
    x8=20.9838018399x_{8} = -20.9838018399
    x9=67.0161482956x_{9} = -67.0161482956
    x10=47.0161482956x_{10} = -47.0161482956
    x11=49.0161482956x_{11} = -49.0161482956
    x12=51.0161482956x_{12} = -51.0161482956
    x13=0.273290551007x_{13} = 0.273290551007
    x14=99.0161482956x_{14} = -99.0161482956
    x15=35.016148206x_{15} = -35.016148206
    x16=37.0161482813x_{16} = -37.0161482813
    x17=81.0161482956x_{17} = -81.0161482956
    x18=101.016148296x_{18} = -101.016148296
    x19=23.0108368572x_{19} = -23.0108368572
    x20=87.0161482956x_{20} = -87.0161482956
    x21=115.016148296x_{21} = -115.016148296
    x22=39.0161482933x_{22} = -39.0161482933
    x23=105.016148296x_{23} = -105.016148296
    x24=25.015294841x_{24} = -25.015294841
    x25=69.0161482956x_{25} = -69.0161482956
    x26=45.0161482956x_{26} = -45.0161482956
    x27=65.0161482956x_{27} = -65.0161482956
    x28=111.016148296x_{28} = -111.016148296
    x29=57.0161482956x_{29} = -57.0161482956
    x30=83.0161482956x_{30} = -83.0161482956
    x31=73.0161482956x_{31} = -73.0161482956
    x32=53.0161482956x_{32} = -53.0161482956
    x33=79.0161482956x_{33} = -79.0161482956
    x34=41.0161482952x_{34} = -41.0161482952
    x35=93.0161482956x_{35} = -93.0161482956
    x36=97.0161482956x_{36} = -97.0161482956
    x37=55.0161482956x_{37} = -55.0161482956
    x38=29.0161264298x_{38} = -29.0161264298
    x39=71.0161482956x_{39} = -71.0161482956
    x40=77.0161482956x_{40} = -77.0161482956
    x41=113.016148296x_{41} = -113.016148296
    x42=63.0161482956x_{42} = -63.0161482956
    x43=109.016148296x_{43} = -109.016148296
    x44=61.0161482956x_{44} = -61.0161482956
    x45=75.0161482956x_{45} = -75.0161482956
    x46=91.0161482956x_{46} = -91.0161482956
    x47=103.016148296x_{47} = -103.016148296
    x48=33.0161477358x_{48} = -33.0161477358
    x49=31.016144797x_{49} = -31.016144797
    Данные корни
    x21=115.016148296x_{21} = -115.016148296
    x41=113.016148296x_{41} = -113.016148296
    x28=111.016148296x_{28} = -111.016148296
    x43=109.016148296x_{43} = -109.016148296
    x5=107.016148296x_{5} = -107.016148296
    x23=105.016148296x_{23} = -105.016148296
    x47=103.016148296x_{47} = -103.016148296
    x18=101.016148296x_{18} = -101.016148296
    x14=99.0161482956x_{14} = -99.0161482956
    x36=97.0161482956x_{36} = -97.0161482956
    x6=95.0161482956x_{6} = -95.0161482956
    x35=93.0161482956x_{35} = -93.0161482956
    x46=91.0161482956x_{46} = -91.0161482956
    x3=89.0161482956x_{3} = -89.0161482956
    x20=87.0161482956x_{20} = -87.0161482956
    x4=85.0161482956x_{4} = -85.0161482956
    x30=83.0161482956x_{30} = -83.0161482956
    x17=81.0161482956x_{17} = -81.0161482956
    x33=79.0161482956x_{33} = -79.0161482956
    x40=77.0161482956x_{40} = -77.0161482956
    x45=75.0161482956x_{45} = -75.0161482956
    x31=73.0161482956x_{31} = -73.0161482956
    x39=71.0161482956x_{39} = -71.0161482956
    x25=69.0161482956x_{25} = -69.0161482956
    x9=67.0161482956x_{9} = -67.0161482956
    x27=65.0161482956x_{27} = -65.0161482956
    x42=63.0161482956x_{42} = -63.0161482956
    x44=61.0161482956x_{44} = -61.0161482956
    x2=59.0161482956x_{2} = -59.0161482956
    x29=57.0161482956x_{29} = -57.0161482956
    x37=55.0161482956x_{37} = -55.0161482956
    x32=53.0161482956x_{32} = -53.0161482956
    x12=51.0161482956x_{12} = -51.0161482956
    x11=49.0161482956x_{11} = -49.0161482956
    x10=47.0161482956x_{10} = -47.0161482956
    x26=45.0161482956x_{26} = -45.0161482956
    x1=43.0161482956x_{1} = -43.0161482956
    x34=41.0161482952x_{34} = -41.0161482952
    x22=39.0161482933x_{22} = -39.0161482933
    x16=37.0161482813x_{16} = -37.0161482813
    x15=35.016148206x_{15} = -35.016148206
    x48=33.0161477358x_{48} = -33.0161477358
    x49=31.016144797x_{49} = -31.016144797
    x38=29.0161264298x_{38} = -29.0161264298
    x7=27.0160116495x_{7} = -27.0160116495
    x24=25.015294841x_{24} = -25.015294841
    x19=23.0108368572x_{19} = -23.0108368572
    x8=20.9838018399x_{8} = -20.9838018399
    x13=0.273290551007x_{13} = 0.273290551007
    являются точками смены знака неравенства в решениях.
    Сначала определимся со знаком до крайней левой точки:
    x0<x21x_{0} < x_{21}
    Возьмём например точку
    x0=x21110x_{0} = x_{21} - \frac{1}{10}
    =
    115.116148296-115.116148296
    =
    115.116148296-115.116148296
    подставляем в выражение
    4x+1+2910x+25x+1>0- 4^{x + 1} + - 29 \cdot 10^{x} + 25^{x + 1} > 0
      -115.116148296 + 1        -115.116148296    -115.116148296 + 1    
    25                   - 29*10               - 4                   > 0

    -1.97348007762276e-69 > 0

    Тогда
    x<115.016148296x < -115.016148296
    не выполняется
    значит одно из решений нашего неравенства будет при:
    x>115.016148296x<113.016148296x > -115.016148296 \wedge x < -113.016148296
             _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____           _____  
            /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /     \         /
    -------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------ο-------
           x21      x41      x28      x43      x5      x23      x47      x18      x14      x36      x6      x35      x46      x3      x20      x4      x30      x17      x33      x40      x45      x31      x39      x25      x9      x27      x42      x44      x2      x29      x37      x32      x12      x11      x10      x26      x1      x34      x22      x16      x15      x48      x49      x38      x7      x24      x19      x8      x13

    Другие решения неравенства будем получать переходом на следующий полюс
    и т.д.
    Ответ:
    x>115.016148296x<113.016148296x > -115.016148296 \wedge x < -113.016148296
    x>111.016148296x<109.016148296x > -111.016148296 \wedge x < -109.016148296
    x>107.016148296x<105.016148296x > -107.016148296 \wedge x < -105.016148296
    x>103.016148296x<101.016148296x > -103.016148296 \wedge x < -101.016148296
    x>99.0161482956x<97.0161482956x > -99.0161482956 \wedge x < -97.0161482956
    x>95.0161482956x<93.0161482956x > -95.0161482956 \wedge x < -93.0161482956
    x>91.0161482956x<89.0161482956x > -91.0161482956 \wedge x < -89.0161482956
    x>87.0161482956x<85.0161482956x > -87.0161482956 \wedge x < -85.0161482956
    x>83.0161482956x<81.0161482956x > -83.0161482956 \wedge x < -81.0161482956
    x>79.0161482956x<77.0161482956x > -79.0161482956 \wedge x < -77.0161482956
    x>75.0161482956x<73.0161482956x > -75.0161482956 \wedge x < -73.0161482956
    x>71.0161482956x<69.0161482956x > -71.0161482956 \wedge x < -69.0161482956
    x>67.0161482956x<65.0161482956x > -67.0161482956 \wedge x < -65.0161482956
    x>63.0161482956x<61.0161482956x > -63.0161482956 \wedge x < -61.0161482956
    x>59.0161482956x<57.0161482956x > -59.0161482956 \wedge x < -57.0161482956
    x>55.0161482956x<53.0161482956x > -55.0161482956 \wedge x < -53.0161482956
    x>51.0161482956x<49.0161482956x > -51.0161482956 \wedge x < -49.0161482956
    x>47.0161482956x<45.0161482956x > -47.0161482956 \wedge x < -45.0161482956
    x>43.0161482956x<41.0161482952x > -43.0161482956 \wedge x < -41.0161482952
    x>39.0161482933x<37.0161482813x > -39.0161482933 \wedge x < -37.0161482813
    x>35.016148206x<33.0161477358x > -35.016148206 \wedge x < -33.0161477358
    x>31.016144797x<29.0161264298x > -31.016144797 \wedge x < -29.0161264298
    x>27.0160116495x<25.015294841x > -27.0160116495 \wedge x < -25.015294841
    x>23.0108368572x<20.9838018399x > -23.0108368572 \wedge x < -20.9838018399
    x>0.273290551007x > 0.273290551007
    Решение неравенства на графике
    -5.0-4.0-3.0-2.0-1.05.00.01.02.03.04.0-2525