Произведение первых n-членов
[src]$$P_{n} = \left(b_{1} b_{n}\right)^{\frac{n}{2}}$$
$$P_{3} = \left(\left(-2\right) \left(-338\right)\right)^{\frac{3}{2}}$$
/ / n\
|b_1*\1 - q /
|------------ for q != 1
S = < 1 - q
|
| n*b_1 otherwise
\ $$S = \begin{cases} \frac{b_{1} \cdot \left(1 - q^{n}\right)}{1 - q} & \text{for}\: q \neq 1 \\b_{1} n & \text{otherwise} \end{cases}$$
/ 3\
-2*\1 - (-13) /
S3 = ---------------
1 + 13 $$S_{3} = \frac{\left(-1\right) 2 \cdot \left(1 - \left(-13\right)^{3}\right)}{1 + 13}$$