/ / n\
|b_1*\1 - q /
|------------ for q != 1
S = < 1 - q
|
| b_1*n otherwise
\ $$S = \begin{cases} \frac{b_{1} \cdot \left(1 - q^{n}\right)}{1 - q} & \text{for}\: q \neq 1 \\b_{1} n & \text{otherwise} \end{cases}$$
/ 22\
| / 20 \ |
| | -- | |
| | 21 | |
| |-2 | |
8*|1 - |-----| |
\ \ 2 / /
S22 = -----------------
20
--
21
2
1 + ---
2 $$S_{22} = \frac{8 \cdot \left(1 - \left(- \frac{2^{\frac{20}{21}}}{2}\right)^{22}\right)}{\frac{2^{\frac{20}{21}}}{2} + 1}$$
20
--
21
8 - 2*2
S22 = ---------
20
--
21
2
1 + ---
2 $$S_{22} = \frac{8 - 2 \cdot 2^{\frac{20}{21}}}{\frac{2^{\frac{20}{21}}}{2} + 1}$$
Сумма бесконечной прогрессии
[src] / / n\\
| | / 20 \ ||
| | | -- | ||
| | | 21 | ||
| | |-2 | ||
|8*|1 - |-----| ||
| \ \ 2 / /|
S = lim |----------------|
n->oo| 20 |
| -- |
| 21 |
| 2 |
| 1 + --- |
\ 2 /$$S = \lim_{n \to \infty}\left(\frac{8 \cdot \left(1 - \left(- \frac{2^{\frac{20}{21}}}{2}\right)^{n}\right)}{\frac{2^{\frac{20}{21}}}{2} + 1}\right)$$
8
S = -------
20
--
21
2
1 + ---
2 $$S = \frac{8}{\frac{2^{\frac{20}{21}}}{2} + 1}$$
Произведение первых n-членов
[src]$$P_{n} = \left(b_{1} b_{n}\right)^{\frac{n}{2}}$$
$$P_{22} = \left(8 \left(-4\right)\right)^{11}$$
$$P_{22} = -36028797018963968$$
8; -4*2^(20/21); 4*2^(19/21); -4*2^(6/7); 4*2^(17/21); -4*2^(16/21); 4*2^(5/7); -4*2^(2/3); 4*2^(13/21); -4*2^(4/7); 4*2^(11/21); -4*2^(10/21); 4*2^(3/7); -4*2^(8/21); 4*2^(1/3); -4*2^(2/7); 4*2^(5/21); -4*2^(4/21); 4*2^(1/7); -4*2^(2/21); 4*2^(1/21); -4...
$$b_{2} = - 4 \cdot 2^{\frac{20}{21}}$$
$$b_{3} = 4 \cdot 2^{\frac{19}{21}}$$
$$b_{4} = - 4 \cdot 2^{\frac{6}{7}}$$
$$b_{5} = 4 \cdot 2^{\frac{17}{21}}$$
$$b_{6} = - 4 \cdot 2^{\frac{16}{21}}$$
$$b_{7} = 4 \cdot 2^{\frac{5}{7}}$$
$$b_{8} = - 4 \cdot 2^{\frac{2}{3}}$$
$$b_{9} = 4 \cdot 2^{\frac{13}{21}}$$
$$b_{10} = - 4 \cdot 2^{\frac{4}{7}}$$
$$b_{11} = 4 \cdot 2^{\frac{11}{21}}$$
$$b_{12} = - 4 \cdot 2^{\frac{10}{21}}$$
$$b_{13} = 4 \cdot 2^{\frac{3}{7}}$$
$$b_{14} = - 4 \cdot 2^{\frac{8}{21}}$$
$$b_{15} = 4 \cdot \sqrt[3]{2}$$
$$b_{16} = - 4 \cdot 2^{\frac{2}{7}}$$
$$b_{17} = 4 \cdot 2^{\frac{5}{21}}$$
$$b_{18} = - 4 \cdot 2^{\frac{4}{21}}$$
$$b_{19} = 4 \cdot \sqrt[7]{2}$$
$$b_{20} = - 4 \cdot 2^{\frac{2}{21}}$$
$$b_{21} = 4 \cdot \sqrt[21]{2}$$