164031982421875/6; 32806396484375/6; 6561279296875/6; 1312255859375/6; 262451171875/6; 52490234375/6; 10498046875/6; 2099609375/6; 419921875/6; 83984375/6; 16796875/6; 3359375/6; 671875/6; 134375/6; 26875/6; 5375/6; 1075/6; 215/6; 43/6; 43/30...
$$b_{1} = \frac{164031982421875}{6}$$
$$b_{2} = \frac{32806396484375}{6}$$
$$b_{3} = \frac{6561279296875}{6}$$
$$b_{4} = \frac{1312255859375}{6}$$
$$b_{5} = \frac{262451171875}{6}$$
$$b_{6} = \frac{52490234375}{6}$$
$$b_{7} = \frac{10498046875}{6}$$
$$b_{8} = \frac{2099609375}{6}$$
$$b_{9} = \frac{419921875}{6}$$
$$b_{10} = \frac{83984375}{6}$$
$$b_{11} = \frac{16796875}{6}$$
$$b_{12} = \frac{3359375}{6}$$
$$b_{13} = \frac{671875}{6}$$
$$b_{14} = \frac{134375}{6}$$
$$b_{15} = \frac{26875}{6}$$
$$b_{16} = \frac{5375}{6}$$
$$b_{17} = \frac{1075}{6}$$
$$b_{18} = \frac{215}{6}$$
$$b_{19} = \frac{43}{6}$$
$$b_{20} = \frac{43}{30}$$
Сумма бесконечной прогрессии
[src] / -n\
|820159912109375 820159912109375*5 |
S = lim |--------------- - -------------------|
n->oo\ 24 24 /$$S = \lim_{n \to \infty}\left(\frac{820159912109375}{24} - \frac{820159912109375 \cdot 5^{- n}}{24}\right)$$
820159912109375
S = ---------------
24 $$S = \frac{820159912109375}{24}$$
Произведение первых n-членов
[src]$$P_{n} = \left(b_{1} b_{n}\right)^{\frac{n}{2}}$$
Произведение двадцати членов
10
/ 43\
P20 = |164031982421875/6*--|
\ 30/ $$P_{20} = \left(\frac{164031982421875}{6} \cdot \frac{43}{30}\right)^{10}$$
31208281071658220662945391384523002235289241112924051345194288885283989481002356385151431941389390988187609054550775145031593638123013079166412353515625
P20 = --------------------------------------------------------------------------------------------------------------------------------------------------------
3656158440062976 $$P_{20} = \frac{31208281071658220662945391384523002235289241112924051345194288885283989481002356385151431941389390988187609054550775145031593638123013079166412353515625}{3656158440062976}$$
/ / n\
|b_1*\1 - q /
|------------ for q != 1
S = < 1 - q
|
| b_1*n otherwise
\ $$S = \begin{cases} \frac{b_{1} \cdot \left(1 - q^{n}\right)}{1 - q} & \text{for}\: q \neq 1 \\b_{1} n & \text{otherwise} \end{cases}$$
/ / 1 \\
|164031982421875*|1 - ---||
| | 20||
| \ 5 /|
|-------------------------|
\ 6 /
S20 = ---------------------------
1 - 1/5 $$S_{20} = \frac{\frac{164031982421875}{6} \cdot \left(1 - \left(\frac{1}{5}\right)^{20}\right)}{- \frac{1}{5} + 1}$$
$$S_{20} = \frac{170866648356118}{5}$$