/ 1 x - 1 \
-|----- - --------|
|x + 1 2|
\ (x + 1) /
--------------------
______________
/ 2
/ (x - 1)
/ 1 - --------
/ 2
\/ (x + 1) $$- \frac{- \frac{x - 1}{\left(x + 1\right)^{2}} + \frac{1}{x + 1}}{\sqrt{- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1}}$$
/ / -1 + x\\
| (-1 + x)*|-1 + ------||
/ -1 + x\ | \ 1 + x /|
-|-1 + ------|*|2 + -----------------------|
\ 1 + x / | / 2\|
| | (-1 + x) ||
| (1 + x)*|1 - ---------||
| | 2||
\ \ (1 + x) //
---------------------------------------------
_______________
/ 2
2 / (-1 + x)
(1 + x) * / 1 - ---------
/ 2
\/ (1 + x) $$- \frac{1}{\left(x + 1\right)^{2} \sqrt{- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1}} \left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{\left(x - 1\right) \left(\frac{x - 1}{x + 1} - 1\right)}{\left(x + 1\right) \left(- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1\right)} + 2\right)$$
/ 2 \
| 4*(-1 + x) 3*(-1 + x) 2 |
| 1 - ---------- + ----------- 2 / -1 + x\ / -1 + x\|
| 1 + x 2 3*(-1 + x) *|-1 + ------| 4*(-1 + x)*|-1 + ------||
/ -1 + x\ | (1 + x) \ 1 + x / \ 1 + x /|
|-1 + ------|*|6 + ---------------------------- + -------------------------- + ------------------------|
\ 1 + x / | 2 2 / 2\ |
| (-1 + x) / 2\ | (-1 + x) | |
| 1 - --------- 2 | (-1 + x) | (1 + x)*|1 - ---------| |
| 2 (1 + x) *|1 - ---------| | 2| |
| (1 + x) | 2| \ (1 + x) / |
\ \ (1 + x) / /
--------------------------------------------------------------------------------------------------------
_______________
/ 2
3 / (-1 + x)
(1 + x) * / 1 - ---------
/ 2
\/ (1 + x) $$\frac{1}{\left(x + 1\right)^{3} \sqrt{- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1}} \left(\frac{x - 1}{x + 1} - 1\right) \left(\frac{3 \left(x - 1\right)^{2} \left(\frac{x - 1}{x + 1} - 1\right)^{2}}{\left(x + 1\right)^{2} \left(- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1\right)^{2}} + \frac{4 \left(x - 1\right) \left(\frac{x - 1}{x + 1} - 1\right)}{\left(x + 1\right) \left(- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1\right)} + 6 + \frac{\frac{3 \left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} - \frac{4 x - 4}{x + 1} + 1}{- \frac{\left(x - 1\right)^{2}}{\left(x + 1\right)^{2}} + 1}\right)$$