1
-----------------
______________
/ 2
\/ 1 - (t - 1)
$$\frac{1}{\sqrt{- \left(t - 1\right)^{2} + 1}}$$
-1 + t
------------------
3/2
/ 2\
\1 - (-1 + t) / $$\frac{t - 1}{\left(- \left(t - 1\right)^{2} + 1\right)^{\frac{3}{2}}}$$
2
3*(-1 + t)
1 + -------------
2
1 - (-1 + t)
------------------
3/2
/ 2\
\1 - (-1 + t) / $$\frac{\frac{3 \left(t - 1\right)^{2}}{- \left(t - 1\right)^{2} + 1} + 1}{\left(- \left(t - 1\right)^{2} + 1\right)^{\frac{3}{2}}}$$