/ 2 \
|2*cos (x)*(1 + sin(x)) |
-|---------------------- + sin(x)|
| 2 |
\ 1 + (1 + sin(x)) /
-----------------------------------
2
1 + (1 + sin(x)) $$- \frac{1}{\left(\sin{\left (x \right )} + 1\right)^{2} + 1} \left(\sin{\left (x \right )} + \frac{2 \left(\sin{\left (x \right )} + 1\right) \cos^{2}{\left (x \right )}}{\left(\sin{\left (x \right )} + 1\right)^{2} + 1}\right)$$
/ 2 2 2 \
| 2*cos (x) 6*(1 + sin(x))*sin(x) 8*(1 + sin(x)) *cos (x)|
|-1 - ----------------- + --------------------- + -----------------------|*cos(x)
| 2 2 2 |
| 1 + (1 + sin(x)) 1 + (1 + sin(x)) / 2\ |
\ \1 + (1 + sin(x)) / /
---------------------------------------------------------------------------------
2
1 + (1 + sin(x)) $$\frac{\cos{\left (x \right )}}{\left(\sin{\left (x \right )} + 1\right)^{2} + 1} \left(-1 + \frac{6 \left(\sin{\left (x \right )} + 1\right) \sin{\left (x \right )}}{\left(\sin{\left (x \right )} + 1\right)^{2} + 1} - \frac{2 \cos^{2}{\left (x \right )}}{\left(\sin{\left (x \right )} + 1\right)^{2} + 1} + \frac{8 \left(\sin{\left (x \right )} + 1\right)^{2} \cos^{2}{\left (x \right )}}{\left(\left(\sin{\left (x \right )} + 1\right)^{2} + 1\right)^{2}}\right)$$