Производная 2*log(tan(t))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
2*log(tan(t))
$$2 \log{\left (\tan{\left (t \right )} \right )}$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим .

    2. Производная является .

    3. Затем примените цепочку правил. Умножим на :

      1. Есть несколько способов вычислить эту производную.

        Один из способов:

      В результате последовательности правил:

    Таким образом, в результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
  /       2   \
2*\1 + tan (t)/
---------------
     tan(t)    
$$\frac{2 \tan^{2}{\left (t \right )} + 2}{\tan{\left (t \right )}}$$
Вторая производная [src]
  /                             2\
  |                /       2   \ |
  |         2      \1 + tan (t)/ |
2*|2 + 2*tan (t) - --------------|
  |                      2       |
  \                   tan (t)    /
$$2 \left(- \frac{\left(\tan^{2}{\left (t \right )} + 1\right)^{2}}{\tan^{2}{\left (t \right )}} + 2 \tan^{2}{\left (t \right )} + 2\right)$$
Третья производная [src]
                /                        2                  \
                |           /       2   \      /       2   \|
  /       2   \ |           \1 + tan (t)/    2*\1 + tan (t)/|
4*\1 + tan (t)/*|2*tan(t) + -------------- - ---------------|
                |                 3               tan(t)    |
                \              tan (t)                      /
$$4 \left(\tan^{2}{\left (t \right )} + 1\right) \left(\frac{\left(\tan^{2}{\left (t \right )} + 1\right)^{2}}{\tan^{3}{\left (t \right )}} - \frac{2 \tan^{2}{\left (t \right )} + 2}{\tan{\left (t \right )}} + 2 \tan{\left (t \right )}\right)$$