x
2 x
- ------ + 2 *acot(x)*log(2)
2
1 + x $$2^{x} \log{\left (2 \right )} \operatorname{acot}{\left (x \right )} - \frac{2^{x}}{x^{2} + 1}$$
x / 2 2*log(2) 2*x \
2 *|log (2)*acot(x) - -------- + ---------|
| 2 2|
| 1 + x / 2\ |
\ \1 + x / /
$$2^{x} \left(\frac{2 x}{\left(x^{2} + 1\right)^{2}} + \log^{2}{\left (2 \right )} \operatorname{acot}{\left (x \right )} - \frac{2 \log{\left (2 \right )}}{x^{2} + 1}\right)$$
/ 2 2 \
x | 2 3 8*x 3*log (2) 6*x*log(2)|
2 *|--------- + log (2)*acot(x) - --------- - --------- + ----------|
| 2 3 2 2 |
|/ 2\ / 2\ 1 + x / 2\ |
\\1 + x / \1 + x / \1 + x / /
$$2^{x} \left(- \frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} + \frac{6 x \log{\left (2 \right )}}{\left(x^{2} + 1\right)^{2}} + \log^{3}{\left (2 \right )} \operatorname{acot}{\left (x \right )} - \frac{3 \log^{2}{\left (2 \right )}}{x^{2} + 1} + \frac{2}{\left(x^{2} + 1\right)^{2}}\right)$$