Производная e^sin(5*x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 sin(5*x)
E        
$$e^{\sin{\left (5 x \right )}}$$
Подробное решение
  1. Заменим .

  2. Производная само оно.

  3. Затем примените цепочку правил. Умножим на :

    1. Заменим .

    2. Производная синуса есть косинус:

    3. Затем примените цепочку правил. Умножим на :

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: получим

        Таким образом, в результате:

      В результате последовательности правил:

    В результате последовательности правил:


Ответ:

График
Первая производная [src]
            sin(5*x)
5*cos(5*x)*e        
$$5 e^{\sin{\left (5 x \right )}} \cos{\left (5 x \right )}$$
Вторая производная [src]
   /   2                \  sin(5*x)
25*\cos (5*x) - sin(5*x)/*e        
$$25 \left(- \sin{\left (5 x \right )} + \cos^{2}{\left (5 x \right )}\right) e^{\sin{\left (5 x \right )}}$$
Третья производная [src]
    /        2                  \           sin(5*x)
125*\-1 + cos (5*x) - 3*sin(5*x)/*cos(5*x)*e        
$$125 \left(- 3 \sin{\left (5 x \right )} + \cos^{2}{\left (5 x \right )} - 1\right) e^{\sin{\left (5 x \right )}} \cos{\left (5 x \right )}$$