Производная e^(x/2)+1

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 x    
 -    
 2    
E  + 1
$$e^{\frac{x}{2}} + 1$$
Подробное решение
  1. дифференцируем почленно:

    1. Заменим .

    2. Производная само оно.

    3. Затем примените цепочку правил. Умножим на :

      1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

        1. В силу правила, применим: получим

        Таким образом, в результате:

      В результате последовательности правил:

    4. Производная постоянной равна нулю.

    В результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
 x
 -
 2
e 
--
2 
$$\frac{e^{\frac{x}{2}}}{2}$$
Вторая производная [src]
 x
 -
 2
e 
--
4 
$$\frac{e^{\frac{x}{2}}}{4}$$
Третья производная [src]
 x
 -
 2
e 
--
8 
$$\frac{e^{\frac{x}{2}}}{8}$$