Производная cos(x)^(2)-1

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   2       
cos (x) - 1
cos2(x)1\cos^{2}{\left (x \right )} - 1
Подробное решение
  1. дифференцируем cos2(x)1\cos^{2}{\left (x \right )} - 1 почленно:

    1. Заменим u=cos(x)u = \cos{\left (x \right )}.

    2. В силу правила, применим: u2u^{2} получим 2u2 u

    3. Затем примените цепочку правил. Умножим на ddxcos(x)\frac{d}{d x} \cos{\left (x \right )}:

      1. Производная косинус есть минус синус:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left (x \right )} = - \sin{\left (x \right )}

      В результате последовательности правил:

      2sin(x)cos(x)- 2 \sin{\left (x \right )} \cos{\left (x \right )}

    4. Производная постоянной 1-1 равна нулю.

    В результате: 2sin(x)cos(x)- 2 \sin{\left (x \right )} \cos{\left (x \right )}

  2. Теперь упростим:

    sin(2x)- \sin{\left (2 x \right )}


Ответ:

sin(2x)- \sin{\left (2 x \right )}

График
02468-8-6-4-2-10102-2
Первая производная [src]
-2*cos(x)*sin(x)
2sin(x)cos(x)- 2 \sin{\left (x \right )} \cos{\left (x \right )}
Вторая производная [src]
  /   2         2   \
2*\sin (x) - cos (x)/
2(sin2(x)cos2(x))2 \left(\sin^{2}{\left (x \right )} - \cos^{2}{\left (x \right )}\right)
Третья производная [src]
8*cos(x)*sin(x)
8sin(x)cos(x)8 \sin{\left (x \right )} \cos{\left (x \right )}