Производная (cos(x)^(-2)-1)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   1       
------- - 1
   2       
cos (x)    
$$-1 + \frac{1}{\cos^{2}{\left (x \right )}}$$
Подробное решение
  1. дифференцируем почленно:

    1. Заменим .

    2. В силу правила, применим: получим

    3. Затем примените цепочку правил. Умножим на :

      1. Производная косинус есть минус синус:

      В результате последовательности правил:

    4. Производная постоянной равна нулю.

    В результате:


Ответ:

График
Первая производная [src]
2*sin(x)
--------
   3    
cos (x) 
$$\frac{2 \sin{\left (x \right )}}{\cos^{3}{\left (x \right )}}$$
Вторая производная [src]
  /         2   \
  |    3*sin (x)|
2*|1 + ---------|
  |        2    |
  \     cos (x) /
-----------------
        2        
     cos (x)     
$$\frac{1}{\cos^{2}{\left (x \right )}} \left(\frac{6 \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + 2\right)$$
Третья производная [src]
  /         2   \       
  |    3*sin (x)|       
8*|2 + ---------|*sin(x)
  |        2    |       
  \     cos (x) /       
------------------------
           3            
        cos (x)         
$$\frac{8 \sin{\left (x \right )}}{\cos^{3}{\left (x \right )}} \left(\frac{3 \sin^{2}{\left (x \right )}}{\cos^{2}{\left (x \right )}} + 2\right)$$