100 cos (x)
d / 100 \ --\cos (x)/ dx
Заменим .
В силу правила, применим: получим
Затем примените цепочку правил. Умножим на :
Производная косинус есть минус синус:
В результате последовательности правил:
Ответ:
99 -100*cos (x)*sin(x)
98 / 2 2 \ 100*cos (x)*\- cos (x) + 99*sin (x)/
97 / 2 2 \ 200*cos (x)*\- 4851*sin (x) + 149*cos (x)/*sin(x)
![Найти производную y' = f'(x) = cos(x)^100 (косинус от (х) в степени 100) - функции. Найдём значение производной функции в точке. [Есть ответ!] Производная cos(x)^100 /media/krcore-image-pods/hash/derivative/d/e8/7d16764b4bc8aad5d0c059609c0e4.png](/media/krcore-image-pods/hash/derivative/d/e8/7d16764b4bc8aad5d0c059609c0e4.png)