cot(x)
d --(cot(x)) dx
Есть несколько способов вычислить эту производную.
Перепишем функции, чтобы дифференцировать:
Заменим .
В силу правила, применим: получим
Затем примените цепочку правил. Умножим на :
Перепишем функции, чтобы дифференцировать:
Применим правило производной частного:
и .
Чтобы найти :
Производная синуса есть косинус:
Чтобы найти :
Производная косинус есть минус синус:
Теперь применим правило производной деления:
В результате последовательности правил:
Перепишем функции, чтобы дифференцировать:
Применим правило производной частного:
и .
Чтобы найти :
Производная косинус есть минус синус:
Чтобы найти :
Производная синуса есть косинус:
Теперь применим правило производной деления:
Теперь упростим:
Ответ:
/ 2 \ 2*\1 + cot (x)/*cot(x)
/ 2 \ / 2 \ -2*\1 + cot (x)/*\1 + 3*cot (x)/
![Найти производную y' = f'(x) = cot(x) (котангенс от (х)) - функции. Найдём значение производной функции в точке. [Есть ответ!] Производная cot(x) /media/krcore-image-pods/hash/derivative/8/5d/ec7d6fb18c7108f8e5046c2f1aa82.png](/media/krcore-image-pods/hash/derivative/8/5d/ec7d6fb18c7108f8e5046c2f1aa82.png)