Производная 1/(x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
  1
1*-
  x
$$1 \cdot \frac{1}{x}$$
d /  1\
--|1*-|
dx\  x/
$$\frac{d}{d x} 1 \cdot \frac{1}{x}$$
Подробное решение
  1. Применим правило производной частного:

    и .

    Чтобы найти :

    1. Производная постоянной равна нулю.

    Чтобы найти :

    1. В силу правила, применим: получим

    Теперь применим правило производной деления:


Ответ:

График
Первая производная [src]
-1 
---
  2
 x 
$$- \frac{1}{x^{2}}$$
Вторая производная [src]
2 
--
 3
x 
$$\frac{2}{x^{3}}$$
Третья производная [src]
-6 
---
  4
 x 
$$- \frac{6}{x^{4}}$$
График
Производная 1/(x) /media/krcore-image-pods/hash/derivative/6/eb/53e5ce1f6c517d8b09018f5949fb7.png