Производная 5*cos(x)^(2)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
     2   
5*cos (x)
5cos2(x)5 \cos^{2}{\left (x \right )}
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим u=cos(x)u = \cos{\left (x \right )}.

    2. В силу правила, применим: u2u^{2} получим 2u2 u

    3. Затем примените цепочку правил. Умножим на ddxcos(x)\frac{d}{d x} \cos{\left (x \right )}:

      1. Производная косинус есть минус синус:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left (x \right )} = - \sin{\left (x \right )}

      В результате последовательности правил:

      2sin(x)cos(x)- 2 \sin{\left (x \right )} \cos{\left (x \right )}

    Таким образом, в результате: 10sin(x)cos(x)- 10 \sin{\left (x \right )} \cos{\left (x \right )}

  2. Теперь упростим:

    5sin(2x)- 5 \sin{\left (2 x \right )}


Ответ:

5sin(2x)- 5 \sin{\left (2 x \right )}

График
02468-8-6-4-2-1010-1010
Первая производная [src]
-10*cos(x)*sin(x)
10sin(x)cos(x)- 10 \sin{\left (x \right )} \cos{\left (x \right )}
Вторая производная [src]
   /   2         2   \
10*\sin (x) - cos (x)/
10(sin2(x)cos2(x))10 \left(\sin^{2}{\left (x \right )} - \cos^{2}{\left (x \right )}\right)
Третья производная [src]
40*cos(x)*sin(x)
40sin(x)cos(x)40 \sin{\left (x \right )} \cos{\left (x \right )}