log(sin(x)) 5
d / log(sin(x))\ --\5 / dx
Заменим .
Затем примените цепочку правил. Умножим на :
Заменим .
Производная является .
Затем примените цепочку правил. Умножим на :
Производная синуса есть косинус:
В результате последовательности правил:
В результате последовательности правил:
Теперь упростим:
Ответ:
log(sin(x))
5 *cos(x)*log(5)
--------------------------
sin(x) / 2 2 \
log(sin(x)) | cos (x) cos (x)*log(5)|
5 *|-1 - ------- + --------------|*log(5)
| 2 2 |
\ sin (x) sin (x) / / 2 2 2 2 \
log(sin(x)) | 2*cos (x) cos (x)*log (5) 3*cos (x)*log(5)|
5 *|2 - 3*log(5) + --------- + --------------- - ----------------|*cos(x)*log(5)
| 2 2 2 |
\ sin (x) sin (x) sin (x) /
------------------------------------------------------------------------------------------
sin(x) ![Найти производную y' = f'(x) = 5^(log(sin(x))) (5 в степени (логарифм от (синус от (х)))) - функции. Найдём значение производной функции в точке. [Есть ответ!] Производная 5^(log(sin(x))) /media/krcore-image-pods/hash/derivative/5/61/202f24cbef3d8775c180dcb30bc53.png](/media/krcore-image-pods/hash/derivative/5/61/202f24cbef3d8775c180dcb30bc53.png)