x
5 x
------ + 5 *atan(x)*log(5)
2
1 + x $$5^{x} \log{\left (5 \right )} \operatorname{atan}{\left (x \right )} + \frac{5^{x}}{x^{2} + 1}$$
x / 2 2*x 2*log(5)\
5 *|log (5)*atan(x) - --------- + --------|
| 2 2 |
| / 2\ 1 + x |
\ \1 + x / /
$$5^{x} \left(- \frac{2 x}{\left(x^{2} + 1\right)^{2}} + \log^{2}{\left (5 \right )} \operatorname{atan}{\left (x \right )} + \frac{2 \log{\left (5 \right )}}{x^{2} + 1}\right)$$
/ 2 2 \
x | 2 3 3*log (5) 8*x 6*x*log(5)|
5 *|- --------- + log (5)*atan(x) + --------- + --------- - ----------|
| 2 2 3 2 |
| / 2\ 1 + x / 2\ / 2\ |
\ \1 + x / \1 + x / \1 + x / /
$$5^{x} \left(\frac{8 x^{2}}{\left(x^{2} + 1\right)^{3}} - \frac{6 x \log{\left (5 \right )}}{\left(x^{2} + 1\right)^{2}} + \log^{3}{\left (5 \right )} \operatorname{atan}{\left (x \right )} + \frac{3 \log^{2}{\left (5 \right )}}{x^{2} + 1} - \frac{2}{\left(x^{2} + 1\right)^{2}}\right)$$