/ x\
-(1 + log(x))*log\x /
----------------------
______________
/ 2/ x\
\/ 1 - log \x / $$- \frac{\left(\log{\left (x \right )} + 1\right) \log{\left (x^{x} \right )}}{\sqrt{- \log^{2}{\left (x^{x} \right )} + 1}}$$
/ / x\ 2 2/ x\\
| 2 log\x / (1 + log(x)) *log \x /|
-|(1 + log(x)) + ------- + ----------------------|
| x 2/ x\ |
\ 1 - log \x / /
----------------------------------------------------
______________
/ 2/ x\
\/ 1 - log \x / $$- \frac{1}{\sqrt{- \log^{2}{\left (x^{x} \right )} + 1}} \left(\left(\log{\left (x \right )} + 1\right)^{2} + \frac{\left(\log{\left (x \right )} + 1\right)^{2} \log^{2}{\left (x^{x} \right )}}{- \log^{2}{\left (x^{x} \right )} + 1} + \frac{1}{x} \log{\left (x^{x} \right )}\right)$$
/ x\ 3 / x\ 3 3/ x\ 2/ x\
log\x / 3*(1 + log(x)) 3*(1 + log(x)) *log\x / 3*(1 + log(x)) *log \x / 3*log \x /*(1 + log(x))
------- - -------------- - ----------------------- - ------------------------ - -----------------------
2 x 2/ x\ 2 / 2/ x\\
x 1 - log \x / / 2/ x\\ x*\1 - log \x //
\1 - log \x //
-------------------------------------------------------------------------------------------------------
______________
/ 2/ x\
\/ 1 - log \x / $$\frac{1}{\sqrt{- \log^{2}{\left (x^{x} \right )} + 1}} \left(- \frac{3 \left(\log{\left (x \right )} + 1\right)^{3} \log{\left (x^{x} \right )}}{- \log^{2}{\left (x^{x} \right )} + 1} - \frac{3 \left(\log{\left (x \right )} + 1\right)^{3} \log^{3}{\left (x^{x} \right )}}{\left(- \log^{2}{\left (x^{x} \right )} + 1\right)^{2}} - \frac{1}{x} \left(3 \log{\left (x \right )} + 3\right) - \frac{3 \left(\log{\left (x \right )} + 1\right) \log^{2}{\left (x^{x} \right )}}{x \left(- \log^{2}{\left (x^{x} \right )} + 1\right)} + \frac{1}{x^{2}} \log{\left (x^{x} \right )}\right)$$