2*x
------------------
3/2
/ 2\
| / 2 \ |
\1 + \x + 1/ / $$\frac{2 x}{\left(\left(x^{2} + 1\right)^{2} + 1\right)^{\frac{3}{2}}}$$
/ 2 / 2\\
| 6*x *\1 + x /|
2*|1 - -------------|
| 2|
| / 2\ |
\ 1 + \1 + x / /
---------------------
3/2
/ 2\
| / 2\ |
\1 + \1 + x / / $$\frac{1}{\left(\left(x^{2} + 1\right)^{2} + 1\right)^{\frac{3}{2}}} \left(- \frac{12 x^{2} \left(x^{2} + 1\right)}{\left(x^{2} + 1\right)^{2} + 1} + 2\right)$$
/ 2\
| 2 / 2\ |
| 2 10*x *\1 + x / |
12*x*|-3 - 5*x + ---------------|
| 2 |
| / 2\ |
\ 1 + \1 + x / /
----------------------------------
5/2
/ 2\
| / 2\ |
\1 + \1 + x / / $$\frac{12 x}{\left(\left(x^{2} + 1\right)^{2} + 1\right)^{\frac{5}{2}}} \left(\frac{10 x^{2} \left(x^{2} + 1\right)^{2}}{\left(x^{2} + 1\right)^{2} + 1} - 5 x^{2} - 3\right)$$