2 1
1 + tan (x) - -----------
________
/ 2
\/ 1 - x $$\tan^{2}{\left (x \right )} + 1 - \frac{1}{\sqrt{- x^{2} + 1}}$$
x / 2 \
- ----------- + 2*\1 + tan (x)/*tan(x)
3/2
/ 2\
\1 - x / $$- \frac{x}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} + 2 \left(\tan^{2}{\left (x \right )} + 1\right) \tan{\left (x \right )}$$
2 2
1 / 2 \ 3*x 2 / 2 \
- ----------- + 2*\1 + tan (x)/ - ----------- + 4*tan (x)*\1 + tan (x)/
3/2 5/2
/ 2\ / 2\
\1 - x / \1 - x / $$- \frac{3 x^{2}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + 2 \left(\tan^{2}{\left (x \right )} + 1\right)^{2} + 4 \left(\tan^{2}{\left (x \right )} + 1\right) \tan^{2}{\left (x \right )} - \frac{1}{\left(- x^{2} + 1\right)^{\frac{3}{2}}}$$