Производная (3/(1+3*x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
   3   
-------
1 + 3*x
$$\frac{3}{3 x + 1}$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Заменим .

    2. В силу правила, применим: получим

    3. Затем примените цепочку правил. Умножим на :

      1. дифференцируем почленно:

        1. Производная постоянной равна нулю.

        2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате:

      В результате последовательности правил:

    Таким образом, в результате:


Ответ:

График
Первая производная [src]
   -9     
----------
         2
(1 + 3*x) 
$$- \frac{9}{\left(3 x + 1\right)^{2}}$$
Вторая производная [src]
    54    
----------
         3
(1 + 3*x) 
$$\frac{54}{\left(3 x + 1\right)^{3}}$$
Третья производная [src]
  -486    
----------
         4
(1 + 3*x) 
$$- \frac{486}{\left(3 x + 1\right)^{4}}$$