Производная (3*x)/(1-x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 3*x 
-----
1 - x
$$\frac{3 x}{1 - x}$$
d / 3*x \
--|-----|
dx\1 - x/
$$\frac{d}{d x} \frac{3 x}{1 - x}$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Применим правило производной частного:

      и .

      Чтобы найти :

      1. В силу правила, применим: получим

      Чтобы найти :

      1. дифференцируем почленно:

        1. Производная постоянной равна нулю.

        2. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате:

      Теперь применим правило производной деления:

    Таким образом, в результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
  3       3*x   
----- + --------
1 - x          2
        (1 - x) 
$$\frac{3 x}{\left(1 - x\right)^{2}} + \frac{3}{1 - x}$$
Вторая производная [src]
  /      x   \
6*|1 - ------|
  \    -1 + x/
--------------
          2   
  (-1 + x)    
$$\frac{6 \left(- \frac{x}{x - 1} + 1\right)}{\left(x - 1\right)^{2}}$$
Третья производная [src]
   /       x   \
18*|-1 + ------|
   \     -1 + x/
----------------
           3    
   (-1 + x)     
$$\frac{18 \left(\frac{x}{x - 1} - 1\right)}{\left(x - 1\right)^{3}}$$
График
Производная (3*x)/(1-x) /media/krcore-image-pods/hash/derivative/6/8e/3f433d229bedc4e5652b8aad5e8ac.png