Производная x/e^(-x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
 x 
---
 -x
E  
$$\frac{x}{e^{- x}}$$
Подробное решение
  1. Применяем правило производной умножения:

    ; найдём :

    1. В силу правила, применим: получим

    ; найдём :

    1. Заменим .

    2. В силу правила, применим: получим

    3. Затем примените цепочку правил. Умножим на :

      1. Заменим .

      2. Производная само оно.

      3. Затем примените цепочку правил. Умножим на :

        1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

          1. В силу правила, применим: получим

          Таким образом, в результате:

        В результате последовательности правил:

      В результате последовательности правил:

    В результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
 1       x
--- + x*e 
 -x       
E         
$$x e^{x} + \frac{1}{e^{- x}}$$
Вторая производная [src]
         x
(2 + x)*e 
$$\left(x + 2\right) e^{x}$$
Третья производная [src]
         x
(3 + x)*e 
$$\left(x + 3\right) e^{x}$$