Производная (x+sin(x))^(log(x))

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
            log(x)
(x + sin(x))      
$$\left(x + \sin{\left (x \right )}\right)^{\log{\left (x \right )}}$$
Подробное решение
  1. Не могу найти шаги в поиске этой производной.

    Но производная


Ответ:

График
Первая производная [src]
            log(x) /log(x + sin(x))   (1 + cos(x))*log(x)\
(x + sin(x))      *|--------------- + -------------------|
                   \       x               x + sin(x)    /
$$\left(x + \sin{\left (x \right )}\right)^{\log{\left (x \right )}} \left(\frac{\left(\cos{\left (x \right )} + 1\right) \log{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{1}{x} \log{\left (x + \sin{\left (x \right )} \right )}\right)$$
Вторая производная [src]
                   /                                       2                                 2                                        \
            log(x) |/log(x + sin(x))   (1 + cos(x))*log(x)\    log(x + sin(x))   (1 + cos(x)) *log(x)   log(x)*sin(x)   2*(1 + cos(x))|
(x + sin(x))      *||--------------- + -------------------|  - --------------- - -------------------- - ------------- + --------------|
                   |\       x               x + sin(x)    /            2                        2         x + sin(x)    x*(x + sin(x))|
                   \                                                  x             (x + sin(x))                                      /
$$\left(x + \sin{\left (x \right )}\right)^{\log{\left (x \right )}} \left(\left(\frac{\left(\cos{\left (x \right )} + 1\right) \log{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{1}{x} \log{\left (x + \sin{\left (x \right )} \right )}\right)^{2} - \frac{\log{\left (x \right )} \sin{\left (x \right )}}{x + \sin{\left (x \right )}} - \frac{\left(\cos{\left (x \right )} + 1\right)^{2} \log{\left (x \right )}}{\left(x + \sin{\left (x \right )}\right)^{2}} + \frac{2 \cos{\left (x \right )} + 2}{x \left(x + \sin{\left (x \right )}\right)} - \frac{1}{x^{2}} \log{\left (x + \sin{\left (x \right )} \right )}\right)$$
Третья производная [src]
                   /                                       3                                             /                              2                                        \                                                     2                                                    3                                      \
            log(x) |/log(x + sin(x))   (1 + cos(x))*log(x)\      /log(x + sin(x))   (1 + cos(x))*log(x)\ |log(x + sin(x))   (1 + cos(x)) *log(x)   log(x)*sin(x)   2*(1 + cos(x))|   2*log(x + sin(x))   cos(x)*log(x)   3*(1 + cos(x))       3*sin(x)       3*(1 + cos(x))   2*(1 + cos(x)) *log(x)   3*(1 + cos(x))*log(x)*sin(x)|
(x + sin(x))      *||--------------- + -------------------|  - 3*|--------------- + -------------------|*|--------------- + -------------------- + ------------- - --------------| + ----------------- - ------------- - --------------- - -------------- - --------------- + ---------------------- + ----------------------------|
                   |\       x               x + sin(x)    /      \       x               x + sin(x)    / |        2                        2         x + sin(x)    x*(x + sin(x))|            3            x + sin(x)                  2   x*(x + sin(x))    2                                3                           2        |
                   \                                                                                     \       x             (x + sin(x))                                      /           x                           x*(x + sin(x))                     x *(x + sin(x))       (x + sin(x))                (x + sin(x))         /
$$\left(x + \sin{\left (x \right )}\right)^{\log{\left (x \right )}} \left(\left(\frac{\left(\cos{\left (x \right )} + 1\right) \log{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{1}{x} \log{\left (x + \sin{\left (x \right )} \right )}\right)^{3} - 3 \left(\frac{\left(\cos{\left (x \right )} + 1\right) \log{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{1}{x} \log{\left (x + \sin{\left (x \right )} \right )}\right) \left(\frac{\log{\left (x \right )} \sin{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{\left(\cos{\left (x \right )} + 1\right)^{2} \log{\left (x \right )}}{\left(x + \sin{\left (x \right )}\right)^{2}} - \frac{2 \cos{\left (x \right )} + 2}{x \left(x + \sin{\left (x \right )}\right)} + \frac{1}{x^{2}} \log{\left (x + \sin{\left (x \right )} \right )}\right) - \frac{\log{\left (x \right )} \cos{\left (x \right )}}{x + \sin{\left (x \right )}} + \frac{3 \log{\left (x \right )} \sin{\left (x \right )}}{\left(x + \sin{\left (x \right )}\right)^{2}} \left(\cos{\left (x \right )} + 1\right) + \frac{2 \left(\cos{\left (x \right )} + 1\right)^{3} \log{\left (x \right )}}{\left(x + \sin{\left (x \right )}\right)^{3}} - \frac{3 \sin{\left (x \right )}}{x \left(x + \sin{\left (x \right )}\right)} - \frac{3 \left(\cos{\left (x \right )} + 1\right)^{2}}{x \left(x + \sin{\left (x \right )}\right)^{2}} - \frac{3 \cos{\left (x \right )} + 3}{x^{2} \left(x + \sin{\left (x \right )}\right)} + \frac{2}{x^{3}} \log{\left (x + \sin{\left (x \right )} \right )}\right)$$