Производная 11*x^2+10*x+7-(13-10*x)^(1/5)+3*atan(3*x)

Учитель очень удивится увидев твоё верное решение производной 😼

()'

– производная -го порядка в точке

График:

от до

Кусочно-заданная:

{ кусочно-заданную функцию ввести здесь.

Решение

Вы ввели [src]
    2              5 ___________              
11*x  + 10*x + 7 - \/ 13 - 10*x  + 3*atan(3*x)
10x+135+11x2+10x+7+3atan(3x)- \sqrt[5]{- 10 x + 13} + 11 x^{2} + 10 x + 7 + 3 \operatorname{atan}{\left (3 x \right )}
График
02468-8-6-4-2-10102000-1000
Первая производная [src]
           2             9           
10 + -------------- + -------- + 22*x
                4/5          2       
     (13 - 10*x)      1 + 9*x        
22x+10+2(10x+13)45+99x2+122 x + 10 + \frac{2}{\left(- 10 x + 13\right)^{\frac{4}{5}}} + \frac{9}{9 x^{2} + 1}
Вторая производная [src]
  /           8              81*x   \
2*|11 + -------------- - -----------|
  |                9/5             2|
  |     (13 - 10*x)      /       2\ |
  \                      \1 + 9*x / /
2(81x(9x2+1)2+11+8(10x+13)95)2 \left(- \frac{81 x}{\left(9 x^{2} + 1\right)^{2}} + 11 + \frac{8}{\left(- 10 x + 13\right)^{\frac{9}{5}}}\right)
Третья производная [src]
   /                                          2  \
   |       9               16            324*x   |
18*|- ----------- + --------------- + -----------|
   |            2              14/5             3|
   |  /       2\    (13 - 10*x)       /       2\ |
   \  \1 + 9*x /                      \1 + 9*x / /
18(324x2(9x2+1)39(9x2+1)2+16(10x+13)145)18 \left(\frac{324 x^{2}}{\left(9 x^{2} + 1\right)^{3}} - \frac{9}{\left(9 x^{2} + 1\right)^{2}} + \frac{16}{\left(- 10 x + 13\right)^{\frac{14}{5}}}\right)