Найти производную y' = f'(x) = -tan(x) (минус тангенс от (х)) - функции. Найдём значение производной функции в точке. [Есть ОТВЕТ!]

Производная -tan(x)

Учитель очень удивится увидев твоё верное решение производной 😉

()'

- производная -го порядка в точке

График:

от до

Ввести:

{ кусочно-заданную функцию можно здесь.

Решение

Вы ввели [src]
-tan(x)
$$- \tan{\left(x \right)}$$
d          
--(-tan(x))
dx         
$$\frac{d}{d x} \left(- \tan{\left(x \right)}\right)$$
Подробное решение
  1. Производная произведения константы на функцию есть произведение этой константы на производную данной функции.

    1. Перепишем функции, чтобы дифференцировать:

    2. Применим правило производной частного:

      и .

      Чтобы найти :

      1. Производная синуса есть косинус:

      Чтобы найти :

      1. Производная косинус есть минус синус:

      Теперь применим правило производной деления:

    Таким образом, в результате:

  2. Теперь упростим:


Ответ:

График
Первая производная [src]
        2   
-1 - tan (x)
$$- \tan^{2}{\left(x \right)} - 1$$
Вторая производная [src]
   /       2   \       
-2*\1 + tan (x)/*tan(x)
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}$$
Третья производная [src]
   /       2   \ /         2   \
-2*\1 + tan (x)/*\1 + 3*tan (x)/
$$- 2 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right)$$
График
Производная -tan(x) /media/krcore-image-pods/hash/derivative/9/81/edbc9d7a5b78bbf061e719e793b15.png
×

Где учитесь?

Для правильного составления решения, укажите: