13x^2-25=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 13x^2-25=0

    Решение

    Вы ввели [src]
        2         
    13*x  - 25 = 0
    13x225=013 x^{2} - 25 = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=13a = 13
    b=0b = 0
    c=25c = -25
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (13) * (-25) = 1300

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=51313x_{1} = \frac{5 \sqrt{13}}{13}
    Упростить
    x2=51313x_{2} = - \frac{5 \sqrt{13}}{13}
    Упростить
    График
    05-15-10-51015-20002000
    Быстрый ответ [src]
              ____
         -5*\/ 13 
    x1 = ---------
             13   
    x1=51313x_{1} = - \frac{5 \sqrt{13}}{13}
             ____
         5*\/ 13 
    x2 = --------
            13   
    x2=51313x_{2} = \frac{5 \sqrt{13}}{13}
    Сумма и произведение корней [src]
    сумма
            ____       ____
        5*\/ 13    5*\/ 13 
    0 - -------- + --------
           13         13   
    (51313+0)+51313\left(- \frac{5 \sqrt{13}}{13} + 0\right) + \frac{5 \sqrt{13}}{13}
    =
    0
    00
    произведение
           ____     ____
      -5*\/ 13  5*\/ 13 
    1*---------*--------
          13       13   
    513131(51313)\frac{5 \sqrt{13}}{13} \cdot 1 \left(- \frac{5 \sqrt{13}}{13}\right)
    =
    -25 
    ----
     13 
    2513- \frac{25}{13}
    Теорема Виета
    перепишем уравнение
    13x225=013 x^{2} - 25 = 0
    из
    ax2+bx+c=0a x^{2} + b x + c = 0
    как приведённое квадратное уравнение
    x2+bxa+ca=0x^{2} + \frac{b x}{a} + \frac{c}{a} = 0
    x22513=0x^{2} - \frac{25}{13} = 0
    px+q+x2=0p x + q + x^{2} = 0
    где
    p=bap = \frac{b}{a}
    p=0p = 0
    q=caq = \frac{c}{a}
    q=2513q = - \frac{25}{13}
    Формулы Виета
    x1+x2=px_{1} + x_{2} = - p
    x1x2=qx_{1} x_{2} = q
    x1+x2=0x_{1} + x_{2} = 0
    x1x2=2513x_{1} x_{2} = - \frac{25}{13}
    Численный ответ [src]
    x1 = 1.38675049056307
    x2 = -1.38675049056307
    График
    13x^2-25=0 (уравнение) /media/krcore-image-pods/hash/equation/2/da/c24325e519445f0f7c1da9e0a1b81.png