2c(c+6)=0 (уравнение)
Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 2c(c+6)=0
Решение
Подробное решение
Раскроем выражение в уравнении
$$2 c \left(c + 6\right) + 0 = 0$$
Получаем квадратное уравнение
$$2 c^{2} + 12 c = 0$$
Это уравнение вида
a*c^2 + b*c + c = 0
Квадратное уравнение можно решить
с помощью дискриминанта.
Корни квадратного уравнения:
$$c_{1} = \frac{\sqrt{D} - b}{2 a}$$
$$c_{2} = \frac{- \sqrt{D} - b}{2 a}$$
где D = b^2 - 4*a*c - это дискриминант.
Т.к.
$$a = 2$$
$$b = 12$$
$$c = 0$$
, то
D = b^2 - 4 * a * c =
(12)^2 - 4 * (2) * (0) = 144
Т.к. D > 0, то уравнение имеет два корня.
c1 = (-b + sqrt(D)) / (2*a)
c2 = (-b - sqrt(D)) / (2*a)
или
$$c_{1} = 0$$
Упростить
$$c_{2} = -6$$
Упростить
Сумма и произведение корней
[src]$$\left(-6 + 0\right) + 0$$