3x^2+7=0 (уравнение) Учитель очень удивится увидев твоё верное решение 😼
Найду корень уравнения: 3x^2+7=0
Решение
Подробное решение
Это уравнение видаa*x^2 + b*x + c = 0 Квадратное уравнение можно решить с помощью дискриминанта. Корни квадратного уравнения:x 1 = D − b 2 a x_{1} = \frac{\sqrt{D} - b}{2 a} x 1 = 2 a D − b x 2 = − D − b 2 a x_{2} = \frac{- \sqrt{D} - b}{2 a} x 2 = 2 a − D − b где D = b^2 - 4*a*c - это дискриминант. Т.к.a = 3 a = 3 a = 3 b = 0 b = 0 b = 0 c = 7 c = 7 c = 7 , тоD = b^2 - 4 * a * c = (0)^2 - 4 * (3) * (7) = -84 Т.к. D < 0, то уравнение не имеет вещественных корней, но комплексные корни имеются.x1 = (-b + sqrt(D)) / (2*a) x2 = (-b - sqrt(D)) / (2*a) илиx 1 = 21 i 3 x_{1} = \frac{\sqrt{21} i}{3} x 1 = 3 21 i Упростить x 2 = − 21 i 3 x_{2} = - \frac{\sqrt{21} i}{3} x 2 = − 3 21 i Упростить
График
-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 0 20
____
-I*\/ 21
x1 = ----------
3 x 1 = − 21 i 3 x_{1} = - \frac{\sqrt{21} i}{3} x 1 = − 3 21 i ____
I*\/ 21
x2 = --------
3 x 2 = 21 i 3 x_{2} = \frac{\sqrt{21} i}{3} x 2 = 3 21 i
Сумма и произведение корней
[src] ____ ____
I*\/ 21 I*\/ 21
0 - -------- + --------
3 3 ( 0 − 21 i 3 ) + 21 i 3 \left(0 - \frac{\sqrt{21} i}{3}\right) + \frac{\sqrt{21} i}{3} ( 0 − 3 21 i ) + 3 21 i ____ ____
-I*\/ 21 I*\/ 21
1*----------*--------
3 3 21 i 3 ⋅ 1 ( − 21 i 3 ) \frac{\sqrt{21} i}{3} \cdot 1 \left(- \frac{\sqrt{21} i}{3}\right) 3 21 i ⋅ 1 ( − 3 21 i )
Теорема Виета
перепишем уравнение3 x 2 + 7 = 0 3 x^{2} + 7 = 0 3 x 2 + 7 = 0 изa x 2 + b x + c = 0 a x^{2} + b x + c = 0 a x 2 + b x + c = 0 как приведённое квадратное уравнениеx 2 + b x a + c a = 0 x^{2} + \frac{b x}{a} + \frac{c}{a} = 0 x 2 + a b x + a c = 0 x 2 + 7 3 = 0 x^{2} + \frac{7}{3} = 0 x 2 + 3 7 = 0 p x + q + x 2 = 0 p x + q + x^{2} = 0 p x + q + x 2 = 0 гдеp = b a p = \frac{b}{a} p = a b p = 0 p = 0 p = 0 q = c a q = \frac{c}{a} q = a c q = 7 3 q = \frac{7}{3} q = 3 7 Формулы Виетаx 1 + x 2 = − p x_{1} + x_{2} = - p x 1 + x 2 = − p x 1 x 2 = q x_{1} x_{2} = q x 1 x 2 = q x 1 + x 2 = 0 x_{1} + x_{2} = 0 x 1 + x 2 = 0 x 1 x 2 = 7 3 x_{1} x_{2} = \frac{7}{3} x 1 x 2 = 3 7