(6x−12)⋅(x+15)=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: (6x−12)⋅(x+15)=0

    Решение

    Вы ввели [src]
    (6*x - 12)*(x + 15) = 0
    $$\left(x + 15\right) \left(6 x - 12\right) = 0$$
    Подробное решение
    Раскроем выражение в уравнении
    $$\left(x + 15\right) \left(6 x - 12\right) + 0 = 0$$
    Получаем квадратное уравнение
    $$6 x^{2} + 78 x - 180 = 0$$
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 6$$
    $$b = 78$$
    $$c = -180$$
    , то
    D = b^2 - 4 * a * c = 

    (78)^2 - 4 * (6) * (-180) = 10404

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = 2$$
    Упростить
    $$x_{2} = -15$$
    Упростить
    Быстрый ответ [src]
    x1 = -15
    $$x_{1} = -15$$
    x2 = 2
    $$x_{2} = 2$$
    Сумма и произведение корней [src]
    сумма
    0 - 15 + 2
    $$\left(-15 + 0\right) + 2$$
    =
    -13
    $$-13$$
    произведение
    1*-15*2
    $$1 \left(-15\right) 2$$
    =
    -30
    $$-30$$
    Численный ответ [src]
    x1 = 2.0
    x2 = -15.0