-x^2+5=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: -x^2+5=0

    Решение

    Вы ввели [src]
       2        
    - x  + 5 = 0
    5x2=05 - x^{2} = 0
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    x1=Db2ax_{1} = \frac{\sqrt{D} - b}{2 a}
    x2=Db2ax_{2} = \frac{- \sqrt{D} - b}{2 a}
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    a=1a = -1
    b=0b = 0
    c=5c = 5
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (-1) * (5) = 20

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    x1=5x_{1} = - \sqrt{5}
    x2=5x_{2} = \sqrt{5}
    График
    05-15-10-51015-200200
    Быстрый ответ [src]
            ___
    x1 = -\/ 5 
    x1=5x_{1} = - \sqrt{5}
           ___
    x2 = \/ 5 
    x2=5x_{2} = \sqrt{5}
    Численный ответ [src]
    x1 = 2.23606797749979
    x2 = -2.23606797749979
    График
    -x^2+5=0 (уравнение) /media/krcore-image-pods/hash/equation/f/2d/910f959a5059480ba1bbc801b4e88.png