|x+2|=-3 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: |x+2|=-3

    Решение

    Подробное решение
    Для каждого выражения под модулем в ур-нии
    допускаем случаи, когда соотв. выражение ">= 0" или "< 0",
    решаем получившиеся ур-ния.

    1.
    x+20x + 2 \geq 0
    или
    2xx<-2 \leq x \wedge x < \infty
    получаем ур-ние
    (x+2)+3=0\left(x + 2\right) + 3 = 0
    упрощаем, получаем
    x+5=0x + 5 = 0
    решение на этом интервале:
    x1=5x_{1} = -5
    но x1 не удовлетворяет неравенству

    2.
    x+2<0x + 2 < 0
    или
    <xx<2-\infty < x \wedge x < -2
    получаем ур-ние
    (x2)+3=0\left(- x - 2\right) + 3 = 0
    упрощаем, получаем
    1x=01 - x = 0
    решение на этом интервале:
    x2=1x_{2} = 1
    но x2 не удовлетворяет неравенству


    Тогда, окончательный ответ:
    График
    -15.0-12.5-10.0-7.5-5.0-2.50.02.55.07.515.010.012.5-2020
    Быстрый ответ [src]
    Данное ур-ние не имеет решений
    График
    |x+2|=-3 (уравнение) /media/krcore-image-pods/hash/equation/8/3d/02f86cc07f87151d031d8606b2551.png