16*x^2-81=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 16*x^2-81=0

    Решение

    Вы ввели [src]
        2         
    16*x  - 81 = 0
    $$16 x^{2} - 81 = 0$$
    Подробное решение
    Это уравнение вида
    a*x^2 + b*x + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$x_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$x_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 16$$
    $$b = 0$$
    $$c = -81$$
    , то
    D = b^2 - 4 * a * c = 

    (0)^2 - 4 * (16) * (-81) = 5184

    Т.к. D > 0, то уравнение имеет два корня.
    x1 = (-b + sqrt(D)) / (2*a)

    x2 = (-b - sqrt(D)) / (2*a)

    или
    $$x_{1} = \frac{9}{4}$$
    Упростить
    $$x_{2} = - \frac{9}{4}$$
    Упростить
    График
    Быстрый ответ [src]
    x1 = -9/4
    $$x_{1} = - \frac{9}{4}$$
    x2 = 9/4
    $$x_{2} = \frac{9}{4}$$
    Сумма и произведение корней [src]
    сумма
    0 - 9/4 + 9/4
    $$\left(- \frac{9}{4} + 0\right) + \frac{9}{4}$$
    =
    0
    $$0$$
    произведение
    1*-9/4*9/4
    $$1 \left(- \frac{9}{4}\right) \frac{9}{4}$$
    =
    -81 
    ----
     16 
    $$- \frac{81}{16}$$
    Теорема Виета
    перепишем уравнение
    $$16 x^{2} - 81 = 0$$
    из
    $$a x^{2} + b x + c = 0$$
    как приведённое квадратное уравнение
    $$x^{2} + \frac{b x}{a} + \frac{c}{a} = 0$$
    $$x^{2} - \frac{81}{16} = 0$$
    $$p x + q + x^{2} = 0$$
    где
    $$p = \frac{b}{a}$$
    $$p = 0$$
    $$q = \frac{c}{a}$$
    $$q = - \frac{81}{16}$$
    Формулы Виета
    $$x_{1} + x_{2} = - p$$
    $$x_{1} x_{2} = q$$
    $$x_{1} + x_{2} = 0$$
    $$x_{1} x_{2} = - \frac{81}{16}$$
    Численный ответ [src]
    x1 = 2.25
    x2 = -2.25
    График
    16*x^2-81=0 (уравнение) /media/krcore-image-pods/9446/e1fc/af6a/1e58/im.png