3*sin(x)+4*cos(x)=1 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 3*sin(x)+4*cos(x)=1

    Решение

    Вы ввели [src]
    3*sin(x) + 4*cos(x) = 1
    $$3 \sin{\left(x \right)} + 4 \cos{\left(x \right)} = 1$$
    График
    Быстрый ответ [src]
               /        ___\
               |3   2*\/ 6 |
    x1 = 2*atan|- - -------|
               \5      5   /
    $$x_{1} = 2 \operatorname{atan}{\left(\frac{3}{5} - \frac{2 \sqrt{6}}{5} \right)}$$
               /        ___\
               |3   2*\/ 6 |
    x2 = 2*atan|- + -------|
               \5      5   /
    $$x_{2} = 2 \operatorname{atan}{\left(\frac{3}{5} + \frac{2 \sqrt{6}}{5} \right)}$$
    Сумма и произведение корней [src]
    сумма
              /        ___\         /        ___\
              |3   2*\/ 6 |         |3   2*\/ 6 |
    0 + 2*atan|- - -------| + 2*atan|- + -------|
              \5      5   /         \5      5   /
    $$\left(2 \operatorname{atan}{\left(\frac{3}{5} - \frac{2 \sqrt{6}}{5} \right)} + 0\right) + 2 \operatorname{atan}{\left(\frac{3}{5} + \frac{2 \sqrt{6}}{5} \right)}$$
    =
          /        ___\         /        ___\
          |3   2*\/ 6 |         |3   2*\/ 6 |
    2*atan|- - -------| + 2*atan|- + -------|
          \5      5   /         \5      5   /
    $$2 \operatorname{atan}{\left(\frac{3}{5} - \frac{2 \sqrt{6}}{5} \right)} + 2 \operatorname{atan}{\left(\frac{3}{5} + \frac{2 \sqrt{6}}{5} \right)}$$
    произведение
            /        ___\       /        ___\
            |3   2*\/ 6 |       |3   2*\/ 6 |
    1*2*atan|- - -------|*2*atan|- + -------|
            \5      5   /       \5      5   /
    $$1 \cdot 2 \operatorname{atan}{\left(\frac{3}{5} - \frac{2 \sqrt{6}}{5} \right)} 2 \operatorname{atan}{\left(\frac{3}{5} + \frac{2 \sqrt{6}}{5} \right)}$$
    =
          /        ___\     /        ___\
          |3   2*\/ 6 |     |3   2*\/ 6 |
    4*atan|- - -------|*atan|- + -------|
          \5      5   /     \5      5   /
    $$4 \operatorname{atan}{\left(\frac{3}{5} - \frac{2 \sqrt{6}}{5} \right)} \operatorname{atan}{\left(\frac{3}{5} + \frac{2 \sqrt{6}}{5} \right)}$$
    Численный ответ [src]
    x1 = 11.8404333171479
    x2 = -16.8366164067409
    x3 = 58.5616072794141
    x4 = -94.9737169049051
    x5 = -60.818913556998
    x6 = -29.4029870211001
    x7 = -25.8586785259296
    x8 = -23.1198017139205
    x9 = -38.4250491402888
    x10 = 68.3891010817642
    x11 = 39.7120513578754
    x12 = -85.9516547857164
    x13 = 33.4288660506958
    x14 = 133.959830965569
    x15 = -57.2746050618276
    x16 = 24.4068039315071
    x17 = -76.1241609833663
    x18 = 93.5218423104825
    x19 = 30.6899892386866
    x20 = 190.508498730185
    x21 = -4.27024579238174
    x22 = -63.5577903690071
    x23 = 49.5395451602254
    x24 = -10.5534310995613
    x25 = 62.1059157745846
    x26 = 14.579310129157
    x27 = 64.8447925865937
    x28 = 36.9731745458662
    x29 = 77.4111632009529
    x30 = -32.1418638331092
    x31 = -54.5357282498184
    x32 = 5.5572480099683
    x33 = 74.6722863889438
    x34 = -50.991419754648
    x35 = -13.2923079115705
    x36 = -41.9693576354593
    x37 = -7.00912260439087
    x38 = -88.6905315977255
    x39 = -44.7082344474684
    x40 = -92.234840092896
    x41 = 52.2784219722345
    x42 = -82.4073462905459
    x43 = -98.5180254000755
    x44 = 55.822730467405
    x45 = -69.8409756761867
    x46 = 87.2386570033029
    x47 = -79.6684694785368
    x48 = 83.6943485081325
    x49 = 20.8624954363366
    x50 = 71.1279778937733
    x51 = 27.1456807435162
    x52 = -35.6861723282797
    x53 = -19.57549321875
    x54 = 18.1236186243275
    x55 = 45.995236665055
    x56 = -0.725937297211281
    x57 = 8.29612482197744
    x58 = -48.2525429426388
    x59 = -67.1020988641776
    x60 = -73.3852841713572
    x61 = 2.01293951479785
    x62 = 99.8050276176621
    x63 = 96.2607191224917
    x64 = 89.9775338153121
    x65 = 80.9554716961233
    x66 = 43.2563598530458
    График
    3*sin(x)+4*cos(x)=1 (уравнение) /media/krcore-image-pods/hash/equation/8/b8/7895fd9d7297fe9cf687f86ddaef8.png