36^x-4×6^x-12=0 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 36^x-4×6^x-12=0

    Решение

    Вы ввели [src]
      x      x         
    36  - 4*6  - 12 = 0
    $$36^{x} - 4 \cdot 6^{x} - 12 = 0$$
    Подробное решение
    Дано уравнение:
    $$36^{x} - 4 \cdot 6^{x} - 12 = 0$$
    или
    $$\left(36^{x} - 4 \cdot 6^{x} - 12\right) + 0 = 0$$
    Сделаем замену
    $$v = 6^{x}$$
    получим
    $$v^{2} - 4 v - 12 = 0$$
    или
    $$v^{2} - 4 v - 12 = 0$$
    Это уравнение вида
    a*v^2 + b*v + c = 0

    Квадратное уравнение можно решить
    с помощью дискриминанта.
    Корни квадратного уравнения:
    $$v_{1} = \frac{\sqrt{D} - b}{2 a}$$
    $$v_{2} = \frac{- \sqrt{D} - b}{2 a}$$
    где D = b^2 - 4*a*c - это дискриминант.
    Т.к.
    $$a = 1$$
    $$b = -4$$
    $$c = -12$$
    , то
    D = b^2 - 4 * a * c = 

    (-4)^2 - 4 * (1) * (-12) = 64

    Т.к. D > 0, то уравнение имеет два корня.
    v1 = (-b + sqrt(D)) / (2*a)

    v2 = (-b - sqrt(D)) / (2*a)

    или
    $$v_{1} = 6$$
    Упростить
    $$v_{2} = -2$$
    Упростить
    делаем обратную замену
    $$6^{x} = v$$
    или
    $$x = \frac{\log{\left(v \right)}}{\log{\left(6 \right)}}$$
    Тогда, окончательный ответ
    $$x_{1} = \frac{\log{\left(6 \right)}}{\log{\left(6 \right)}} = 1$$
    $$x_{2} = \frac{\log{\left(-2 \right)}}{\log{\left(6 \right)}} = \frac{\log{\left(2 \right)} + i \pi}{\log{\left(6 \right)}}$$
    График
    Быстрый ответ [src]
    x1 = 1
    $$x_{1} = 1$$
         log(2)    pi*I 
    x2 = ------ + ------
         log(6)   log(6)
    $$x_{2} = \frac{\log{\left(2 \right)}}{\log{\left(6 \right)}} + \frac{i \pi}{\log{\left(6 \right)}}$$
    Сумма и произведение корней [src]
    сумма
            log(2)    pi*I 
    0 + 1 + ------ + ------
            log(6)   log(6)
    $$\left(0 + 1\right) + \left(\frac{\log{\left(2 \right)}}{\log{\left(6 \right)}} + \frac{i \pi}{\log{\left(6 \right)}}\right)$$
    =
        log(2)    pi*I 
    1 + ------ + ------
        log(6)   log(6)
    $$\frac{\log{\left(2 \right)}}{\log{\left(6 \right)}} + 1 + \frac{i \pi}{\log{\left(6 \right)}}$$
    произведение
        /log(2)    pi*I \
    1*1*|------ + ------|
        \log(6)   log(6)/
    $$1 \cdot 1 \left(\frac{\log{\left(2 \right)}}{\log{\left(6 \right)}} + \frac{i \pi}{\log{\left(6 \right)}}\right)$$
    =
    pi*I + log(2)
    -------------
        log(6)   
    $$\frac{\log{\left(2 \right)} + i \pi}{\log{\left(6 \right)}}$$
    Численный ответ [src]
    x1 = 1.0
    x2 = 0.386852807234542 + 1.75335624426379*i
    График
    36^x-4×6^x-12=0 (уравнение) /media/krcore-image-pods/hash/equation/7/c5/9099c2cfefb7fd0e0014d6f7cd585.png