8^x-2^x=60 (уравнение)

Учитель очень удивится увидев твоё верное решение 😼

Неизвестное в уравнении :

Искать численное решение на промежутке:

[, ]

    Найду корень уравнения: 8^x-2^x=60

    Решение

    Вы ввели [src]
     x    x     
    8  - 2  = 60
    2x+8x=60- 2^{x} + 8^{x} = 60
    Подробное решение
    Дано уравнение:
    2x+8x=60- 2^{x} + 8^{x} = 60
    или
    (2x+8x)60=0\left(- 2^{x} + 8^{x}\right) - 60 = 0
    Сделаем замену
    v=2xv = 2^{x}
    получим
    v3v60=0v^{3} - v - 60 = 0
    или
    v3v60=0v^{3} - v - 60 = 0
    делаем обратную замену
    2x=v2^{x} = v
    или
    x=log(v)log(2)x = \frac{\log{\left(v \right)}}{\log{\left(2 \right)}}
    Тогда, окончательный ответ
    x1=log(2)log(2)=1x_{1} = \frac{\log{\left(2 \right)}}{\log{\left(2 \right)}} = 1
    x2=log(log(211i)log(2))log(2)=log(log(211i)log(2))log(2)x_{2} = \frac{\log{\left(\frac{\log{\left(-2 - \sqrt{11} i \right)}}{\log{\left(2 \right)}} \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(\frac{\log{\left(-2 - \sqrt{11} i \right)}}{\log{\left(2 \right)}} \right)}}{\log{\left(2 \right)}}
    x3=log(log(2+11i)log(2))log(2)=log(log(2+11i)log(2))log(2)x_{3} = \frac{\log{\left(\frac{\log{\left(-2 + \sqrt{11} i \right)}}{\log{\left(2 \right)}} \right)}}{\log{\left(2 \right)}} = \frac{\log{\left(\frac{\log{\left(-2 + \sqrt{11} i \right)}}{\log{\left(2 \right)}} \right)}}{\log{\left(2 \right)}}
    График
    -10.0-7.5-5.0-2.50.02.55.07.510.012.515.017.5-100000000000100000000000
    Быстрый ответ [src]
    x1 = 2
    x1=2x_{1} = 2
                         /          /  ____\\
                         |          |\/ 11 ||
            /  ____\   I*|-pi + atan|------||
         log\\/ 15 /     \          \  2   //
    x2 = ----------- + ----------------------
            log(2)             log(2)        
    x2=log(15)log(2)+i(π+atan(112))log(2)x_{2} = \frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}
                         /         /  ____\\
                         |         |\/ 11 ||
            /  ____\   I*|pi - atan|------||
         log\\/ 15 /     \         \  2   //
    x3 = ----------- + ---------------------
            log(2)             log(2)       
    x3=log(15)log(2)+i(πatan(112))log(2)x_{3} = \frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}
    Сумма и произведение корней [src]
    сумма
                        /          /  ____\\                   /         /  ____\\
                        |          |\/ 11 ||                   |         |\/ 11 ||
           /  ____\   I*|-pi + atan|------||      /  ____\   I*|pi - atan|------||
        log\\/ 15 /     \          \  2   //   log\\/ 15 /     \         \  2   //
    2 + ----------- + ---------------------- + ----------- + ---------------------
           log(2)             log(2)              log(2)             log(2)       
    (2+(log(15)log(2)+i(π+atan(112))log(2)))+(log(15)log(2)+i(πatan(112))log(2))\left(2 + \left(\frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}\right)\right) + \left(\frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}\right)
    =
                          /         /  ____\\     /          /  ____\\
                          |         |\/ 11 ||     |          |\/ 11 ||
             /  ____\   I*|pi - atan|------||   I*|-pi + atan|------||
        2*log\\/ 15 /     \         \  2   //     \          \  2   //
    2 + ------------- + --------------------- + ----------------------
            log(2)              log(2)                  log(2)        
    2+2log(15)log(2)+i(π+atan(112))log(2)+i(πatan(112))log(2)2 + \frac{2 \log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}} + \frac{i \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}
    произведение
      /                /          /  ____\\\ /                /         /  ____\\\
      |                |          |\/ 11 ||| |                |         |\/ 11 |||
      |   /  ____\   I*|-pi + atan|------||| |   /  ____\   I*|pi - atan|------|||
      |log\\/ 15 /     \          \  2   //| |log\\/ 15 /     \         \  2   //|
    2*|----------- + ----------------------|*|----------- + ---------------------|
      \   log(2)             log(2)        / \   log(2)             log(2)       /
    2(log(15)log(2)+i(π+atan(112))log(2))(log(15)log(2)+i(πatan(112))log(2))2 \left(\frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(- \pi + \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}\right) \left(\frac{\log{\left(\sqrt{15} \right)}}{\log{\left(2 \right)}} + \frac{i \left(\pi - \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)}\right)}{\log{\left(2 \right)}}\right)
    =
                              /  ____\            /  ____\
       2           2         2|\/ 11 |            |\/ 11 |
    log (15) + 4*pi  + 4*atan |------| - 8*pi*atan|------|
                              \  2   /            \  2   /
    ------------------------------------------------------
                               2                          
                          2*log (2)                       
    8πatan(112)+4atan2(112)+log(15)2+4π22log(2)2\frac{- 8 \pi \operatorname{atan}{\left(\frac{\sqrt{11}}{2} \right)} + 4 \operatorname{atan}^{2}{\left(\frac{\sqrt{11}}{2} \right)} + \log{\left(15 \right)}^{2} + 4 \pi^{2}}{2 \log{\left(2 \right)}^{2}}
    Численный ответ [src]
    x1 = 2.0
    x2 = 1.95344529780426 - 3.04904281272161*i
    x3 = 1.95344529780426 + 3.04904281272161*i
    График
    8^x-2^x=60 (уравнение) /media/krcore-image-pods/hash/equation/e/ef/b3d5ebdebc974cdc773e35e8dfe01.png